234 research outputs found

    Solitons as the early stage of quasicondensate formation during evaporative cooling

    Full text link
    We calculate the evaporative cooling dynamics of trapped one-dimensional Bose-Einstein condensates for parameters leading to a range of condensates and quasicondensates in the final equilibrium state. We confirm that solitons are created during the evaporation process, but always eventually dissipate during thermalisation. The distance between solitons at the end of the evaporation ramp matches the coherence length in the final thermal state. Calculations were made using the classical fields method. They bridge the gap between the phase defect picture of the Kibble-Zurek mechanism and the long-wavelength phase fluctuations in the thermal state

    Non-diffusive phase spreading of a Bose-Einstein condensate at finite temperature

    Full text link
    We show that the phase of a condensate in a finite temperature gas spreads linearly in time at long times rather than in a diffusive way. This result is supported by classical field simulations, and analytical calculations which are generalized to the quantum case under the assumption of quantum ergodicity in the system. This super-diffusive behavior is intimately related to conservation of energy during the free evolution of the system and to fluctuations of energy in the prepared initial state.Comment: 16 pages, 7 figure

    MethOds and tools for comprehensive impact Assessment of the CCAM solutions for passengers and goods. D1.1: CCAM solutions review and gaps

    Get PDF
    Review of the state-of-the-art on Cooperative, Connected and Automated mobility use cases, scenarios, business models, Key Performance Indicators, impact evaluation methods, technologies, and user needs (for organisations & citizens)

    From a nonlinear string to a weakly interacting Bose gas

    Full text link
    We investigate a real scalar field whose dynamics is governed by a nonlinear wave equation. We show that classical description can be applied to a quantum system of many interacting bosons provided that some quantum ingredients are included. An universal action has to be introduced in order to define particle number. The value of this action should be equal to the Planck constant. This constrain can be imposed by removing high frequency modes from the dynamics by introducing a cut-off. We show that the position of the cut-off has to be carefully adjusted. Finally, we show the proper choice of the cut-off ensures that all low frequency eigenenmodes which are taken into account are macroscopically occupied.Comment: 7 pages, 4 figure

    A Lectin HPLC Method to Enrich Selectively-glycosylated Peptides from Complex Biological Samples

    Get PDF
    Glycans are an important class of post-translational modifications. Typically found on secreted and extracellular molecules, glycan structures signal the internal status of the cell. Glycans on tumor cells tend to have abundant sialic acid and fucose moieties. We propose that these cancer-associated glycan variants be exploited for biomarker development aimed at diagnosing early-stage disease. Accordingly, we developed a mass spectrometry-based workflow that incorporates chromatography on affinity matrices formed from lectins, proteins that bind specific glycan structures. The lectins Sambucus nigra (SNA) and Aleuria aurantia (AAL), which bind sialic acid and fucose, respectively, were covalently coupled to POROS beads (Applied Biosystems) and packed into PEEK columns for high pressure liquid chromatography (HPLC). Briefly, plasma was depleted of the fourteen most abundant proteins using a multiple affinity removal system (MARS-14; Agilent). Depleted plasma was trypsin-digested and separated into flow-through and bound fractions by SNA or AAL HPLC. The fractions were treated with PNGaseF to remove N-linked glycans, and analyzed by LC-MS/MS on a QStar Elite. Data were analyzed using Mascot software. The experimental design included positive controls—fucosylated and sialylated human lactoferrin glycopeptides—and negative controls—high mannose glycopeptides from Saccharomyces cerevisiae—that were used to monitor the specificity of lectin capture. Key features of this workflow include the reproducibility derived from the HPLC format, the positive identification of the captured and PNGaseF-treated glycopeptides from their deamidated Asn-Xxx-Ser/Thr motifs, and quality assessment using glycoprotein standards. Protocol optimization also included determining the appropriate ratio of starting material to column capacity, identifying the most efficient capture and elution buffers, and monitoring the PNGaseF-treatment to ensure full deglycosylation. Future directions include using this workflow to perform mass spectrometry-based discovery experiments on plasma from breast cancer patients and control individuals

    Spontaneous creation of Kibble-Zurek solitons in a Bose-Einstein condensate

    Full text link
    When a system crosses a second-order phase transition on a finite timescale, spontaneous symmetry breaking can cause the development of domains with independent order parameters, which then grow and approach each other creating boundary defects. This is known as Kibble-Zurek mechanism. Originally introduced in cosmology, it applies both to classical and quantum phase transitions, in a wide variety of physical systems. Here we report on the spontaneous creation of solitons in Bose-Einstein condensates via the Kibble-Zurek mechanism. We measure the power-law dependence of defects number with the quench time, and provide a check of the Kibble-Zurek scaling with the sonic horizon. These results provide a promising test bed for the determination of critical exponents in Bose-Einstein condensates.Comment: 7 pages, 4 figure

    Survey of large protein complexes D. vulgaris reveals great structural diversity

    Get PDF
    An unbiased survey has been made of the stable, most abundant multi-protein complexes in Desulfovibrio vulgaris Hildenborough (DvH) that are larger than Mr {approx} 400 k. The quaternary structures for 8 of the 16 complexes purified during this work were determined by single-particle reconstruction of negatively stained specimens, a success rate {approx}10 times greater than that of previous 'proteomic' screens. In addition, the subunit compositions and stoichiometries of the remaining complexes were determined by biochemical methods. Our data show that the structures of only two of these large complexes, out of the 13 in this set that have recognizable functions, can be modeled with confidence based on the structures of known homologs. These results indicate that there is significantly greater variability in the way that homologous prokaryotic macromolecular complexes are assembled than has generally been appreciated. As a consequence, we suggest that relying solely on previously determined quaternary structures for homologous proteins may not be sufficient to properly understand their role in another cell of interest

    The genetic basis and evolution of red blood cell sickling in deer

    Get PDF
    Crescent-shaped red blood cells, the hallmark of sickle-cell disease, present a striking departure from the biconcave disc shape normally found in mammals. Characterized by increased mechanical fragility, sickled cells promote haemolytic anaemia and vaso-occlusions and contribute directly to disease in humans. Remarkably, a similar sickle-shaped morphology has been observed in erythrocytes from several deer species, without obvious pathological consequences. The genetic basis of erythrocyte sickling in deer, however, remains unknown. Here, we determine the sequences of human β-globin orthologues in 15 deer species and use protein structural modelling to identify a sickling mechanism distinct from the human disease, coordinated by a derived valine (E22V) that is unique to sickling deer. Evidence for long-term maintenance of a trans-species sickling/non-sickling polymorphism suggests that sickling in deer is adaptive. Our results have implications for understanding the ecological regimes and molecular architectures that have promoted convergent evolution of sickling erythrocytes across vertebrates
    • …
    corecore