4,622 research outputs found

    Evolutionary Markovian Strategies in 2 x 2 Spatial Games

    Get PDF
    Evolutionary spatial 2 x 2 games between heterogeneous agents are analyzed using different variants of cellular automata (CA). Agents play repeatedly against their nearest neighbors 2 x 2 games specified by a rescaled payoff matrix with two parameteres. Each agent is governed by a binary Markovian strategy (BMS) specified by 4 conditional probabilities [p_R, p_S, p_T, p_P] that take values 0 or 1. The initial configuration consists in a random assignment of "strategists" among the 2^4= 16 possible BMS. The system then evolves within strategy space according to the simple standard rule: each agent copies the strategy of the neighbor who got the highest payoff. Besides on the payoff matrix, the dominant strategy -and the degree of cooperation- depend on i) the type of the neighborhood (von Neumann or Moore); ii) the way the cooperation state is actualized (deterministically or stochastichally); and iii) the amount of noise measured by a parameter epsilon. However a robust winner strategy is [1,0,1,1].Comment: 18 pages, 8 figures (7 of these figures contain 4 encapsulapted poscript files each

    Prisoner's Dilemma cellular automata revisited: evolution of cooperation under environmental pressure

    Full text link
    We propose an extension of the evolutionary Prisoner's Dilemma cellular automata, introduced by Nowak and May \cite{nm92}, in which the pressure of the environment is taken into account. This is implemented by requiring that individuals need to collect a minimum score UminU_{min}, representing indispensable resources (nutrients, energy, money, etc.) to prosper in this environment. So the agents, instead of evolving just by adopting the behaviour of the most successful neighbour (who got UmsnU^{msn}), also take into account if UmsnU^{msn} is above or below the threshold UminU_{min}. If Umsn<UminU^{msn}<U_{min} an individual has a probability of adopting the opposite behaviour from the one used by its most successful neighbour. This modification allows the evolution of cooperation for payoffs for which defection was the rule (as it happens, for example, when the sucker's payoff is much worse than the punishment for mutual defection). We also analyse a more sophisticated version of this model in which the selective rule is supplemented with a "win-stay, lose-shift" criterion. The cluster structure is analyzed and, for this more complex version we found power-law scaling for a restricted region in the parameter space.Comment: 15 pages, 8 figures; added figures and revised tex

    Microbial Decontamination and Weight of Carcass Beef as Affected by Automated Washing Pressure and Length of Time of Spray

    Get PDF
    Carcass beef has traditionally been washed by hand to remove foreign material such as hair, soil particles, and microbiological organisms that have contaminated the surfaces. These carcasses are inspected by the Food Safety Inspection Service (FSIS)to detect defects related to carcass cleanliness. Recent research and development of technology have emphasized automated machine washing. At pressures above that normally used, it is conceivable that water could penetrate tissue surfaces and be absorbed by the carcasses. Also, longer wash periods may enhance water uptake by carcasses. According to the ASH RAE Handbook and Product Directory, the average shrinkage of carcass beef using good current practices was 1.3% at 20 hr postmortem. USDA meat inspection regulations required that carcasses sustain no net increase in weight due to absorption of water during the washing process. There is no available literature on the effects of various automated washing techniques on carcass weights after a 20-hr chill. The objectives of the study reported presently were to determine the effects of nozzle pressure and length of time washed on the microflora and weights of carcass beef at 20 hr postmortem

    Finite Size Scaling Analysis of Exact Ground States for +/-J Spin Glass Models in Two Dimensions

    Full text link
    With the help of EXACT ground states obtained by a polynomial algorithm we compute the domain wall energy at zero-temperature for the bond-random and the site-random Ising spin glass model in two dimensions. We find that in both models the stability of the ferromagnetic AND the spin glass order ceases to exist at a UNIQUE concentration p_c for the ferromagnetic bonds. In the vicinity of this critical point, the size and concentration dependency of the first AND second moment of the domain wall energy are, for both models, described by a COMMON finite size scaling form. Moreover, below this concentration the stiffness exponent turns out to be slightly negative \theta_S = -0.056(6) indicating the absence of any intermediate spin glass phase at non-zero temperature.Comment: 7 pages Latex, 5 postscript-figures include

    On the ratio of consecutive gaps between primes

    Get PDF
    In the present work we prove a common generalization of Maynard-Tao's recent result about consecutive bounded gaps between primes and on the Erd\H{o}s-Rankin bound about large gaps between consecutive primes. The work answers in a strong form a 60 years old problem of Erd\"os, which asked whether the ratio of two consecutive primegaps can be infinitely often arbitrarily small, and arbitrarily large, respectively

    Adaptation and enslavement in endosymbiont-host associations

    Full text link
    The evolutionary persistence of symbiotic associations is a puzzle. Adaptation should eliminate cooperative traits if it is possible to enjoy the advantages of cooperation without reciprocating - a facet of cooperation known in game theory as the Prisoner's Dilemma. Despite this barrier, symbioses are widespread, and may have been necessary for the evolution of complex life. The discovery of strategies such as tit-for-tat has been presented as a general solution to the problem of cooperation. However, this only holds for within-species cooperation, where a single strategy will come to dominate the population. In a symbiotic association each species may have a different strategy, and the theoretical analysis of the single species problem is no guide to the outcome. We present basic analysis of two-species cooperation and show that a species with a fast adaptation rate is enslaved by a slowly evolving one. Paradoxically, the rapidly evolving species becomes highly cooperative, whereas the slowly evolving one gives little in return. This helps understand the occurrence of endosymbioses where the host benefits, but the symbionts appear to gain little from the association.Comment: v2: Correction made to equations 5 & 6 v3: Revised version accepted in Phys. Rev. E; New figure adde

    Building Cooperative Networks

    Full text link
    We study the cooperation problem in the framework of evolutionary game theory using the prisoner's dilemma as metaphor of the problem. Considering the growing process of the system and individuals with imitation capacity, we show conditions that allow to form highly cooperative networks of any size and topology. Introducing general considerations of real systems, we reduce the required conditions for cooperation to evolve approaching the benefit-cost ratio r to the theoretical minimum r=1, when the mean connectivity of the individuals is increased. Through the paper, we distinguish different mechanisms that allow the system to maintain high levels of cooperation when the system grows by incorporation of defectors. These mechanisms require heterogeneity among individuals for cooperation to evolve. However, the required conditions and heterogeneities are drastically reduced as compared to those required for static networks.Comment: 24 pages, 8 figure

    Quantum mechanics gives stability to a Nash equilibrium

    Get PDF
    We consider a slightly modified version of the Rock-Scissors-Paper (RSP) game from the point of view of evolutionary stability. In its classical version the game has a mixed Nash equilibrium (NE) not stable against mutants. We find a quantized version of the RSP game for which the classical mixed NE becomes stable.Comment: Revised on referee's criticism, submitted to Physical Review
    • …
    corecore