34,276 research outputs found

    Emission line models for the lowest-mass core collapse supernovae. I: Case study of a 9 M⊙M_\odot one-dimensional neutrino-driven explosion

    Full text link
    A large fraction of core-collapse supernovae (CCSNe), 30-50%, are expected to originate from the low-mass end of progenitors with MZAMS =8−12 M⊙M_{\rm ZAMS}~= 8-12~M_\odot. However, degeneracy effects make stellar evolution modelling of such stars challenging, and few predictions for their supernova light curves and spectra have been presented. Here we calculate synthetic nebular spectra of a 9 M⊙M_\odot Fe CCSN model exploded with the neutrino mechanism. The model predicts emission lines with FWHM∼\sim1000 km/s, including signatures from each deep layer in the metal core. We compare this model to observations of the three subluminous IIP SNe with published nebular spectra; SN 1997D, SN 2005cs, and SN 2008bk. The prediction of both line profiles and luminosities are in good agreement with SN 1997D and SN 2008bk. The close fit of a model with no tuning parameters provides strong evidence for an association of these objects with low-mass Fe CCSNe. For SN 2005cs, the interpretation is less clear, as the observational coverage ended before key diagnostic lines from the core had emerged. We perform a parameterised study of the amount of explosively made stable nickel, and find that none of these three SNe show the high 58^{58}Ni/56^{56}Ni ratio predicted by current models of electron capture SNe (ECSNe) and ECSN-like explosions. Combined with clear detection of lines from O and He shell material, these SNe rather originate from Fe core progenitors. We argue that the outcome of self-consistent explosion simulations of low-mass stars, which gives fits to many key observables, strongly suggests that the class of subluminous Type IIP SNe is the observational counterpart of the lowest mass CCSNe.Comment: Resubmitted to MNRAS after referee comment

    Global Anisotropies in Supernova Explosions and Pulsar Recoil

    Full text link
    We show by two-dimensional and first three-dimensional simulations of neutrino-driven supernova explosions that low (l=1,2) modes can dominate the flow pattern in the convective postshock region on timescales of hundreds of milliseconds after core bounce. This can lead to large global anisotropy of the supernova explosion and pulsar kicks in excess of 500 km/s.Comment: 3 pages, 2 figures, contribution to Procs. 12th Workshop on Nuclear Astrophysics, Ringberg Castle, March 22-27, 200

    Dynamics and phase evolution of Bose-Einstein condensates in one-dimensional optical lattices

    Full text link
    We report experimental results on the dynamics and phase evolution of Bose-Einstein condensates in 1D optical lattices. The dynamical behaviour is studied by adiabatically loading the condensate into the lattice and subsequently switching off the magnetic trap. In this case, the condensate is free to expand inside the periodic structure of the optical lattice. The phase evolution of the condensate, on the other hand, can be studied by non-adiabatically switching on the periodic potential. We observe decays and revivals of the interference pattern after a time-of-flight.Comment: 6 pages, 5 figures; submitted to the Proceedings of the 11th Laser Physics Workshop, Bratislava 200

    Towards a Topological Mechanism of Quark Confinement

    Get PDF
    We report on new analyses of the topological and chiral vacuum structure of four-dimensional QCD on the lattice. Correlation functions as well as visualization of monopole currents in the maximally Abelian gauge emphasize their topological origin and gauge invariant characterization. The (anti)selfdual character of strong vacuum fluctuations is reveiled by smoothing. In full QCD, (anti)instanton positions are also centers of the local chiral condensate and quark charge density. Most results turn out generically independent of the action and the cooling/smoothing method.Comment: 14 pages, Contribution to YKIS9

    Regular and problematic leisure-time Internet use in the community: results from a German population-based survey

    Get PDF
    In our study, we attempted to identify systematically the use of Internet applications in the German population in order to derive risk factors for problematic use. In a representative survey of the German population, we queried 1,401 women and 1,111 men between the ages of 14 and 94 years by specific questions and standardized questionnaires on depression, anxiety (HADS), and depersonalization (CDS-2). The majority of the German population (55%) used the Internet in their leisure time. Users were younger and had a higher socioeconomic status (education, employment, income). Leisure-time use included e-mail and information search, as well as shopping. Chatting, online communities, games and sex were domains of young, mostly male adults. Overall, 9.3% reported at least one negative consequence of Internet use, especially neglect of recreational activities and problems with family/partner, work or education, and health. Problematic use was associated with longer average daily online times, avoidance of negative emotions, preference for certain applications (gaming, gam- bling, online sex) and an increased rate of depersonalization. The extent of Internet use per se is not sufficient as an addiction criterion and other negative consequences; rather, specific adverse consequences need to be identified. If the Internet is used excessively to cope with negative affect states and alternative means of coping (e.g., social support, health-promoting behavior) are diminished, a vicious cycle may ensue with increasing stress and reliance on the reinforcing properties of certain online activities that may finally lead to addictive behaviour

    Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice

    Full text link
    We demonstrate preparation and detection of an atom number distribution in a one-dimensional atomic lattice with the variance −14-14 dB below the Poissonian noise level. A mesoscopic ensemble containing a few thousand atoms is trapped in the evanescent field of a nanofiber. The atom number is measured through dual-color homodyne interferometry with a pW-power shot noise limited probe. Strong coupling of the evanescent probe guided by the nanofiber allows for a real-time measurement with a precision of ±8\pm 8 atoms on an ensemble of some 10310^3 atoms in a one-dimensional trap. The method is very well suited for generating collective atomic entangled or spin-squeezed states via a quantum non-demolition measurement as well as for tomography of exotic atomic states in a one-dimensional lattice
    • …
    corecore