7,816 research outputs found

    A Fresh Look at Entropy and the Second Law of Thermodynamics

    Full text link
    This paper is a non-technical, informal presentation of our theory of the second law of thermodynamics as a law that is independent of statistical mechanics and that is derivable solely from certain simple assumptions about adiabatic processes for macroscopic systems. It is not necessary to assume a-priori concepts such as "heat", "hot and cold", "temperature". These are derivable from entropy, whose existence we derive from the basic assumptions. See cond-mat/9708200 and math-ph/9805005.Comment: LaTex file. To appear in the April 2000 issue of PHYSICS TODA

    Quasi-Homogeneous Thermodynamics and Black Holes

    Get PDF
    We propose a generalized thermodynamics in which quasi-homogeneity of the thermodynamic potentials plays a fundamental role. This thermodynamic formalism arises from a generalization of the approach presented in paper [1], and it is based on the requirement that quasi-homogeneity is a non-trivial symmetry for the Pfaffian form δQrev\delta Q_{rev}. It is shown that quasi-homogeneous thermodynamics fits the thermodynamic features of at least some self-gravitating systems. We analyze how quasi-homogeneous thermodynamics is suggested by black hole thermodynamics. Then, some existing results involving self-gravitating systems are also shortly discussed in the light of this thermodynamic framework. The consequences of the lack of extensivity are also recalled. We show that generalized Gibbs-Duhem equations arise as a consequence of quasi-homogeneity of the thermodynamic potentials. An heuristic link between this generalized thermodynamic formalism and the thermodynamic limit is also discussed.Comment: 39 pages, uses RevteX. Published version (minor changes w.r.t. the original one

    Four lectures on secant varieties

    Full text link
    This paper is based on the first author's lectures at the 2012 University of Regina Workshop "Connections Between Algebra and Geometry". Its aim is to provide an introduction to the theory of higher secant varieties and their applications. Several references and solved exercises are also included.Comment: Lectures notes to appear in PROMS (Springer Proceedings in Mathematics & Statistics), Springer/Birkhause

    Off-diagonal long-range order, cycle probabilities, and condensate fraction in the ideal Bose gas

    Full text link
    We discuss the relationship between the cycle probabilities in the path-integral representation of the ideal Bose gas, off-diagonal long-range order, and Bose--Einstein condensation. Starting from the Landsberg recursion relation for the canonic partition function, we use elementary considerations to show that in a box of size L^3 the sum of the cycle probabilities of length k >> L^2 equals the off-diagonal long-range order parameter in the thermodynamic limit. For arbitrary systems of ideal bosons, the integer derivative of the cycle probabilities is related to the probability of condensing k bosons. We use this relation to derive the precise form of the \pi_k in the thermodynamic limit. We also determine the function \pi_k for arbitrary systems. Furthermore we use the cycle probabilities to compute the probability distribution of the maximum-length cycles both at T=0, where the ideal Bose gas reduces to the study of random permutations, and at finite temperature. We close with comments on the cycle probabilities in interacting Bose gases.Comment: 6 pages, extensive rewriting, new section on maximum-length cycle

    Spectral Equivalence of Bosons and Fermions in One-Dimensional Harmonic Potentials

    Get PDF
    Recently, Schmidt and Schnack (cond-mat/9803151, cond-mat/9810036), following earlier references, reiterate that the specific heat of N non-interacting bosons in a one-dimensional harmonic well equals that of N fermions in the same potential. We show that this peculiar relationship between specific heats results from a more dramatic equivalence between bose and fermi systems. Namely, we prove that the excitation spectrums of such bose and fermi systems are spectrally equivalent. Two complementary proofs are provided, one based on an analysis of the dynamical symmetry group of the N-body system, the other using combinatoric analysis.Comment: Six Pages, No Figures, Submitted to Phys. Rev.

    Accessibility of physical states and non-uniqueness of entanglement measure

    Full text link
    Ordering physical states is the key to quantifying some physical property of the states uniquely. Bipartite pure entangled states are totally ordered under local operations and classical communication (LOCC) in the asymptotic limit and uniquely quantified by the well-known entropy of entanglement. However, we show that mixed entangled states are partially ordered under LOCC even in the asymptotic limit. Therefore, non-uniqueness of entanglement measure is understood on the basis of an operational notion of asymptotic convertibility.Comment: 8 pages, 1 figure. v2: main result unchanged but presentation extensively changed. v3: figure added, minor correction

    The curve of lines on a prime Fano threefold of genus 8

    Full text link
    We show that a general prime Fano threefold X of genus 8 can be reconstructed from the pair (Γ,L)(\Gamma,L), where Γ\Gamma is its Fano curve of lines and L=OΓ(1)L=O_{\Gamma}(1) is the theta-characteristic which gives a natural embedding \Gamma \subset \matbb{P}^5.Comment: 24 pages, misprints corrected, to appear in International Journal of Mathematic

    Notes on the Third Law of Thermodynamics.I

    Get PDF
    We analyze some aspects of the third law of thermodynamics. We first review both the entropic version (N) and the unattainability version (U) and the relation occurring between them. Then, we heuristically interpret (N) as a continuity boundary condition for thermodynamics at the boundary T=0 of the thermodynamic domain. On a rigorous mathematical footing, we discuss the third law both in Carath\'eodory's approach and in Gibbs' one. Carath\'eodory's approach is fundamental in order to understand the nature of the surface T=0. In fact, in this approach, under suitable mathematical conditions, T=0 appears as a leaf of the foliation of the thermodynamic manifold associated with the non-singular integrable Pfaffian form δQrev\delta Q_{rev}. Being a leaf, it cannot intersect any other leaf S=S= const. of the foliation. We show that (N) is equivalent to the requirement that T=0 is a leaf. In Gibbs' approach, the peculiar nature of T=0 appears to be less evident because the existence of the entropy is a postulate; nevertheless, it is still possible to conclude that the lowest value of the entropy has to belong to the boundary of the convex set where the function is defined.Comment: 29 pages, 2 figures; RevTex fil

    Thermodynamic fluctuation relation for temperature and energy

    Full text link
    The present work extends the well-known thermodynamic relation C=β2<δE2>C=\beta ^{2}< \delta {E^{2}}> for the canonical ensemble. We start from the general situation of the thermodynamic equilibrium between a large but finite system of interest and a generalized thermostat, which we define in the course of the paper. The resulting identity =1+<δE2>∂2S(E)/∂E2 =1+< \delta {E^{2}}% > \partial ^{2}S(E) /\partial {E^{2}} can account for thermodynamic states with a negative heat capacity C<0C<0; at the same time, it represents a thermodynamic fluctuation relation that imposes some restrictions on the determination of the microcanonical caloric curve β(E)=∂S(E)/∂E\beta (E) =\partial S(E) /\partial E. Finally, we comment briefly on the implications of the present result for the development of new Monte Carlo methods and an apparent analogy with quantum mechanics.Comment: Version accepted for publication in J. Phys. A: Math and The
    • …
    corecore