24,438 research outputs found
Effect of velocity slip at a porous boundary on the performance of an incompressible porous bearing
Effect of velocity slip at porous boundary on performance of incompressible porous bearin
QCD sum rules in the effective heavy quark theory
We derive sum rules for the leptonic decay constant of a heavy-light meson in the effective heavy quark theory. We show that the summation of logarithms in the heavy quark mass by the renormalization group technique enhances considerably radiative corrections. Our result for the decay constant in the static limit agrees well with recent lattice calculations. Finite quark mass corrections are estimated
Superconductivity in iron silicide Lu2Fe3Si5 probed by radiation-induced disordering
Resistivity r(T), Hall coefficient RH(T), superconducting temperature Tc, and
the slope of the upper critical field -dHc2/dT were studied in poly- and
single-crystalline samples of the Fe-based superconductor Lu2Fe3Si5 irradiated
by fast neutrons. Atomic disordering induced by the neutron irradiation leads
to a fast suppression of Tc similarly to the case of doping of Lu2Fe3Si5 with
magnetic (Dy) and non-magnetic (Sc, Y) impurities. The same effect was observed
in a novel FeAs-based superconductor La(O-F)FeAs after irradiation. Such
behavior is accounted for by strong pair breaking that is traceable to
scattering at non-magnetic impurities or radiation defects in unconventional
superconductors. In such superconductors the sign of the order parameter
changes between the different Fermi sheets (s+- model). Some relations that are
specified for the properties of the normal and superconducting states in
high-temperature superconductors are also observed in Lu2Fe3Si5. The first is
the relationship -dHc2/dT ~ Tc, instead of the one expected for dirty
superconductors -dHc2/dT ~ r0. The second is a correlation between the
low-temperature linear coefficient a in the resistivity r = r0 + a1T, which
appears presumably due to the scattering at magnetic fluctuations, and Tc; this
correlation being an evidence of a tight relation between the superconductivity
and magnetism. The data point to an unconventional (non-fononic) mechanism of
superconductivity in Lu2Fe3Si5, and, probably, in some other Fe-based
compounds, which can be fruitfully studied via the radiation-induced
disordering.Comment: 7 pages, 8 figure
String Method for the Study of Rare Events
We present a new and efficient method for computing the transition pathways,
free energy barriers, and transition rates in complex systems with relatively
smooth energy landscapes. The method proceeds by evolving strings, i.e. smooth
curves with intrinsic parametrization whose dynamics takes them to the most
probable transition path between two metastable regions in the configuration
space. Free energy barriers and transition rates can then be determined by
standard umbrella sampling technique around the string. Applications to
Lennard-Jones cluster rearrangement and thermally induced switching of a
magnetic film are presented.Comment: 4 pages, 4 figure
Are Compact High-Velocity Clouds Extragalactic Objects?
Compact high-velocity clouds (CHVCs) are the most distant of the HVCs in the
Local Group model and would have HI volume densities of order 0.0003/cm^3.
Clouds with these volume densities and the observed neutral hydrogen column
densities will be largely ionized, even if exposed only to the extragalactic
ionizing radiation field. Here we examine the implications of this process for
models of CHVCs. We have modeled the ionization structure of spherical clouds
(with and without dark matter halos) for a large range of densities and sizes,
appropriate to CHVCs over the range of suggested distances, exposed to the
extragalactic ionizing photon flux. Constant-density cloud models in which the
CHVCs are at Local Group distances have total (ionized plus neutral) gas masses
roughly 20-30 times larger than the neutral gas masses, implying that the gas
mass alone of the observed population of CHVCs is about 40 billion solar
masses. With a realistic (10:1) dark matter to gas mass ratio, the total mass
in such CHVCs is a significant fraction of the dynamical mass of the Local
Group, and their line widths would exceed the observed FWHM. Models with dark
matter halos fare even more poorly; they must lie within approximately 200 kpc
of the Galaxy. We show that exponential neutral hydrogen column density
profiles are a natural consequence of an external source of ionizing photons,
and argue that these profiles cannot be used to derive model-independent
distances to the CHVCs. These results argue strongly that the CHVCs are not
cosmological objects, and are instead associated with the Galactic halo.Comment: 30 pages, 14 figures; to appear in The Astrophysical Journa
Method of Collective Degrees of Freedom in Spin Coherent State Path Integral
We present a detailed field theoretic description of those collective degrees
of freedom (CDF) which are relevant to study macroscopic quantum dynamics of a
quasi-one-dimensional ferromagnetic domain wall. We apply spin coherent state
path integral (SCSPI) in the proper discrete time formalism (a) to extract the
relevant CDF's, namely, the center position and the chirality of the domain
wall, which originate from the translation and the rotation invariances of the
system in question, and (b) to derive effective action for the CDF's by
elimination of environmental zero-modes with the help of the {\it Faddeev-Popov
technique}. The resulting effective action turns out to be such that both the
center position and the chirality can be formally described by boson coherent
state path integral. However, this is only formal; there is a subtle departure
from the latter.Comment: 10 pages, 1 figur
Macroscopic Quantum Tunneling of Ferromagnetic Domain Walls
Quantum tunneling of domain walls out of an impurity potential in a
mesoscopic ferromagnetic sample is investigated. Using improved expressions for
the domain wall mass and for the pinning potential, we find that the cross-over
temperature between thermal activation and quantum tunneling is of a different
functional form than found previously. In materials like Ni or YIG, the
crossover temperatures are around 5 mK. We also find that the WKB exponent is
typically two orders of magnitude larger than current estimates. The sources
for these discrepancies are discussed, and precise estimates for the transition
from three-dimensional to one-dimensional magnetic behavior of a wire are
given. The cross-over temperatures from thermal to quantum transitions and
tunneling rates are calculated for various materials and sample sizes.Comment: 10 pages, 2 postscript figures, REVTe
Macroscopic evidence of microscopic dynamics in the Fermi-Pasta-Ulam oscillator chain from nonlinear time series analysis
The problem of detecting specific features of microscopic dynamics in the
macroscopic behavior of a many-degrees-of-freedom system is investigated by
analyzing the position and momentum time series of a heavy impurity embedded in
a chain of nearest-neighbor anharmonic Fermi-Pasta-Ulam oscillators. Results
obtained in a previous work [M. Romero-Bastida, Phys. Rev. E {\bf69}, 056204
(2004)] suggest that the impurity does not contribute significantly to the
dynamics of the chain and can be considered as a probe for the dynamics of the
system to which the impurity is coupled. The () entropy, which measures
the amount of information generated by unit time at different scales of
time and of the observable, is numerically computed by methods of nonlinear
time-series analysis using the position and momentum signals of the heavy
impurity for various values of the energy density (energy per degree
of freedom) of the system and some values of the impurity mass . Results
obtained from these two time series are compared and discussed.Comment: 7 pages, 5 figures, RevTeX4 PRE format; to be published in Phys. Rev.
Segmented Beam Dump for Time Resolved Spectrometry on a High Current Electron Beam
In the CLIC Test Facility 3 (CTF3), the strong coupling between the beam and the accelerating cavities induces transient effects such that the head of the pulse is accelerated twice as much as the rest of the pulse. Three spectrometer lines are installed along the linac with the aim of measuring energy spread versus time with a 20ns resolution. A major difficulty is due to the high power carried by the beam which imposes extreme constraints of thermal and radiation resistances on the detector. This paper presents the design and the performances of a simple and easy-to-maintain device, called âsegmented dump'. In this device, the particles are stopped inside metallic plates and the deposited charge is measured in the same way as in Faraday cups. Simulations were carried out with the Monte Carlo code âFLUKA' to evaluate the problems arising from the energy deposition and to find ways to prevent or reduce them. The detector resolution was optimized by an adequate choice of material and thickness of the plates. The overall layout of the monitor is described with special emphasis on its mechanical assembly. Finally, limitations arising at higher beam energies are discussed
- …