1,905 research outputs found

    Rotation and Neoclassical Ripple Transport in ITER

    Full text link
    Neoclassical transport in the presence of non-axisymmetric magnetic fields causes a toroidal torque known as neoclassical toroidal viscosity (NTV). The toroidal symmetry of ITER will be broken by the finite number of toroidal field coils and by test blanket modules (TBMs). The addition of ferritic inserts (FIs) will decrease the magnitude of the toroidal field ripple. 3D magnetic equilibria with toroidal field ripple and ferromagnetic structures are calculated for an ITER steady-state scenario using the Variational Moments Equilibrium Code (VMEC). Neoclassical transport quantities in the presence of these error fields are calculated using the Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver (SFINCS). These calculations fully account for ErE_r, flux surface shaping, multiple species, magnitude of ripple, and collisionality rather than applying approximate analytic NTV formulae. As NTV is a complicated nonlinear function of ErE_r, we study its behavior over a plausible range of ErE_r. We estimate the toroidal flow, and hence ErE_r, using a semi-analytic turbulent intrinsic rotation model and NUBEAM calculations of neutral beam torque. The NTV from the ∣n∣=18\rvert n \rvert = 18 ripple dominates that from lower nn perturbations of the TBMs. With the inclusion of FIs, the magnitude of NTV torque is reduced by about 75% near the edge. We present comparisons of several models of tangential magnetic drifts, finding appreciable differences only for superbanana-plateau transport at small ErE_r. We find the scaling of calculated NTV torque with ripple magnitude to indicate that ripple-trapping may be a significant mechanism for NTV in ITER. The computed NTV torque without ferritic components is comparable in magnitude to the NBI and intrinsic turbulent torques and will likely damp rotation, but the NTV torque is significantly reduced by the planned ferritic inserts

    Comparison of fresh and ensiled white and red clover added to ryegrass on energy and protein utilization of lactating cows

    Get PDF
    Two respiratory chamber experiments were conducted with dairy cows to compare metabolizable energy and protein utilization when feeding white or red clover with ryegrass. In experiment 1, fresh ryegrass was mixed with fresh white (WF) or red clover (RF) (60/40, on dry matter (DM) basis). Experiment 2 involved similar mixed diets in ensiled form (WS and RS, respectively), and two ryegrass silage diets, without (GS) or with supplementary maize gluten (GS+). Barley was supplemented according to requirements for milk production. Voluntary forage DM intake remained unaffected in experiment 1 and was higher (P<0·01) in experiment 2 for WS than for GS and GS+(128 v. 98 and 106 g/kg M0·75). Within experiments, no treatment effects occurred for apparent nutrient digestibilities, milk yield, and composition. Protein utilization (milk-N/N-intake) was numerically lower on all clover-based diets (0·24 to 0·25) versus GS (0·29). With added maize gluten (GS+), protein utilization decreased to 0·23, indicating that ryegrass silage (plus barley) alone provided sufficient metabolizable protein. Consequently, higher (P<0·01) urinary energy losses occurred in GS+ compared with GS, despite similar metabolizable energy intakes, and a trend for the highest plasma urea levels was found for GS+ cows (7·59 mmol/l; P<0·1). Overall, this study illustrates that the white and red clovers investigated were equivalent in energy and protein supply, also in comparison to the ryegrass. It remains open whether these forage legumes, when supplemented to a moderate-protein ryegrass, would have contributed to metabolizable protein supply or would have merely increased metabolic nitrogen loa

    Effect of Red and White Clover Added to a Rye Grass-Based Diet on Intake, Fibre Digestion and Methane Release of Dairy Cows

    Get PDF
    Forage legumes like white and red clover are widely grown in association with grass, with the intention to improve the quality of grass-based diets. However little is known about the effect of either white or red clover added to a grass-based diet on methane release, and existing studies are not conclusive. The objective of this study, applying the respiratory chamber technique, was to determine the effect of red and white clover added to a rye grass-based diet on intake, fibre digestion and methane release of dairy cows

    Correlated and zonal errors of global astrometric missions: a spherical harmonic solution

    Full text link
    We propose a computer-efficient and accurate method of estimation of spatially correlated errors in astrometric positions, parallaxes and proper motions obtained by space and ground-based astrometry missions. In our method, the simulated observational equations are set up and solved for the coefficients of scalar and vector spherical harmonics representing the output errors, rather than for individual objects in the output catalog. Both accidental and systematic correlated errors of astrometric parameters can be accurately estimated. The method is demonstrated on the example of the JMAPS mission, but can be used for other projects of space astrometry, such as SIM or JASMINE.Comment: Accepted by AJ, to be published in 201

    Considering Fluctuation Energy as a Measure of Gyrokinetic Turbulence

    Full text link
    In gyrokinetic theory there are two quadratic measures of fluctuation energy, left invariant under nonlinear interactions, that constrain the turbulence. The recent work of Plunk and Tatsuno [Phys. Rev. Lett. 106, 165003 (2011)] reported on the novel consequences that this constraint has on the direction and locality of spectral energy transfer. This paper builds on that work. We provide detailed analysis in support of the results of Plunk and Tatsuno but also significantly broaden the scope and use additional methods to address the problem of energy transfer. The perspective taken here is that the fluctuation energies are not merely formal invariants of an idealized model (two-dimensional gyrokinetics) but are general measures of gyrokinetic turbulence, i.e. quantities that can be used to predict the behavior of the turbulence. Though many open questions remain, this paper collects evidence in favor of this perspective by demonstrating in several contexts that constrained spectral energy transfer governs the dynamics.Comment: Final version as published. Some cosmetic changes and update of reference

    Effects of a latency period between pre-stimulation and teat cup attachment and periodic vacuum reduction on milking characteristics and teat condition in dairy cows

    Get PDF
    The goal of the present study was to examine the suitability of a short pre-stimulation (P) for 15s followed by a latency period (L) of 30s before cluster attachment for machine milking. In addition we tested the effect of a periodic reduction of the vacuum under the teat (VR) during the massage phase from 43kPa to 12-15kPa on milking characteristics and teat tissue condition. The study was carried out in 9 cows in a cross-over design. Animals were milked twice daily, and each of the 4 treatment combinations was used for six subsequent milkings (P+L vs. continuous P, and standard pulsation vs. VR, respectively). Milk flow was recorded during all experimental milkings. Longitudinal ultrasound cross sections of the teat were performed by B-mode ultrasound after the last milking of each treatment at 0, 5, and 15min after the end of milking, respectively. None of the evaluated milking characteristics (total milk yield, main milking time, peak flow rate, average milk flow) differed between treatments. Teat measures as obtained by ultrasound cross sections showed no significant difference if individual treatments were compared at the three time points individually. However, teat wall thickness (TWT) tended to be smaller in VR vs. non-VR treatments at 5min after milking (P=0·05). In conclusion, teat preparation consisting of a short stimulation followed by a latency period represents a similarly efficient pre-stimulation as a continuous pre-stimulation. VR seems to reduce the load on the teat tissue during milking and thus reduces the development of oedema and hence a less pronounced increase of TWT while milking characteristics are similar with or without V

    Astrophysical Gyrokinetics: Basic Equations and Linear Theory

    Full text link
    Magnetohydrodynamic (MHD) turbulence is encountered in a wide variety of astrophysical plasmas, including accretion disks, the solar wind, and the interstellar and intracluster medium. On small scales, this turbulence is often expected to consist of highly anisotropic fluctuations with frequencies small compared to the ion cyclotron frequency. For a number of applications, the small scales are also collisionless, so a kinetic treatment of the turbulence is necessary. We show that this anisotropic turbulence is well described by a low frequency expansion of the kinetic theory called gyrokinetics. This paper is the first in a series to examine turbulent astrophysical plasmas in the gyrokinetic limit. We derive and explain the nonlinear gyrokinetic equations and explore the linear properties of gyrokinetics as a prelude to nonlinear simulations. The linear dispersion relation for gyrokinetics is obtained and its solutions are compared to those of hot-plasma kinetic theory. These results are used to validate the performance of the gyrokinetic simulation code {\tt GS2} in the parameter regimes relevant for astrophysical plasmas. New results on global energy conservation in gyrokinetics are also derived. We briefly outline several of the problems to be addressed by future nonlinear simulations, including particle heating by turbulence in hot accretion flows and in the solar wind, the magnetic and electric field power spectra in the solar wind, and the origin of small-scale density fluctuations in the interstellar medium.Comment: emulateapj, 24 pages, 10 figures, revised submission to ApJ: references added, typos corrected, reorganized and streamline
    • …
    corecore