1,904 research outputs found

    Continuum corrections to the level density and its dependence on excitation energy, n-p asymmetry, and deformation

    Full text link
    In the independent-particle model, the nuclear level density is determined from the neutron and proton single-particle level densities. The single-particle level density for the positive-energy continuum levels is important at high excitation energies for stable nuclei and at all excitation energies for nuclei near the drip lines. This single-particle level density is subdivided into compound-nucleus and gas components. Two methods were considered for this subdivision. First in the subtraction method, the single-particle level density is determined from the scattering phase shifts. In the Gamov method, only the narrow Gamov states or resonances are included. The level densities calculated with these two methods are similar, both can be approximated by the backshifted Fermi-gas expression with level-density parameters that are dependent on A, but with very little dependence on the neutron or proton richness of the nucleus. However, a small decrease in the level-density parameter was predicted for some nuclei very close to the drip lines. The largest difference between the calculations using the two methods was the deformation dependence on the level density. The Gamov method predicts a very strong peaking of the level density at sphericity for high excitation energies. This leads to a suppression of deformed configurations and, consequently, the fission rate predicted by the statistical model is reduced in the Gamov method.Comment: 18 pages 24 figure

    Near-threshold boson pair production in the model of smeared-mass unstable particles

    Full text link
    Near-threshold production of boson pairs is considered within the framework of the model of unstable particles with smeared mass. We describe the principal aspects of the model and consider the strategy of calculations including the radiative corrections. The results of calculations are in good agreement with LEP II data and Monte-Carlo simulations. Suggested approach significantly simplifies calculations with respect to the standard perturbative one.Comment: 15 pages, 6 figures, minor corrections, references adde

    High energy hadrons in EAS at mountain altitude

    Get PDF
    An extensive simulation has been carried out to estimate the physical interpretation of dynamical factors such as , in terms of high energy interaction features, concentrated in the present analysis on the average transverse momentum. It appears that the large enhancement observed for versus primary energy, suggesting in earliest analysis a significant rise of with energy, is only the result of the limited resolution of the detectors and remains in agreement with a wide range of models used in simulations.Comment: 13 pages, 6 PostScript figures, LaTeX Subm. to JPhys

    Single-Bottleneck Approximation for Driven Lattice Gases with Disorder and Open Boundary Conditions

    Full text link
    We investigate the effects of disorder on driven lattice gases with open boundaries using the totally asymmetric simple exclusion process as a paradigmatic example. Disorder is realized by randomly distributed defect sites with reduced hopping rate. In contrast to equilibrium, even macroscopic quantities in disordered non-equilibrium systems depend sensitively on the defect sample. We study the current as function of the entry and exit rates and the realization of disorder and find that it is, in leading order, determined by the longest stretch of consecutive defect sites (single-bottleneck approximation, SBA). Using results from extreme value statistics the SBA allows to study ensembles with fixed defect density which gives accurate results, e.g. for the expectation value of the current. Corrections to SBA come from effective interactions of bottlenecks close to the longest one. Defects close to the boundaries can be described by effective boundary rates and lead to shifts of the phase transitions. Finally it is shown that the SBA also works for more complex models. As an example we discuss a model with internal states that has been proposed to describe transport of the kinesin KIF1A.Comment: submitted to J. Stat. Mec

    Isotope shift in the dielectronic recombination of three-electron ^{A}Nd^{57+}

    Get PDF
    Isotope shifts in dielectronic recombination spectra were studied for Li-like ^{A}Nd^{57+} ions with A=142 and A=150. From the displacement of resonance positions energy shifts \delta E^{142,150}(2s-2p_1/2)= 40.2(3)(6) meV (stat)(sys)) and \delta E^{142,150}(2s-2p_3/2) = 42.3(12)(20) meV of 2s-2p_j transitions were deduced. An evaluation of these values within a full QED treatment yields a change in the mean-square charge radius of ^{142,150}\delta = -1.36(1)(3) fm^2. The approach is conceptually new and combines the advantage of a simple atomic structure with high sensitivity to nuclear size.Comment: 10 pages, 3 figures, accepted for publication in Physical Review Letter

    Convergence and Gauge Dependence Properties of the Resummed One-loop Quark-Quark Scattering Amplitude in Perturbative QCD

    Full text link
    The one-loop QCD effective charge αseff\alpha_s^{eff} for quark-quark scattering is derived by diagrammatic resummation of the one-loop amplitude using an arbitary covariant gauge. Except for the particular choice of gauge parameter ξ=3\xi = -3, αseff\alpha_s^{eff} is found to {\it increase} with increasing physical scale, QQ, as lnQ\ln Q or ln2Q\ln^2 Q. For ξ=3\xi = -3, αseff\alpha_s^{eff} decreases with increasing QQ and satisfies a renormalisation group equation. Also, except for the case ξ=19/9\xi = 19/9, convergence radii of geometric series are found to impose upper limits on QQ.Comment: 28 pages, 5 tables, 5 figures. v3 The one-loop amplitudes in Section 2 are recalculated using dimensional regularisation, and several errors in the on-shell calculation of Reference[1] are pointed out. v4 one figure removed one added. Three tables and new text in Section 5 added. Published versio

    MOST discovers a multimode delta Scuti star in a triple system: HD 61199

    Full text link
    A field star, HD 61199 (V ~ 8), simultaneously observed with Procyon by the MOST (Microvariability & Oscillations of STars) satellite in continuous runs of 34, 17, and 34 days in 2004, 2005, and 2007, was found to pulsate in 11 frequencies in the delta Scuti range with amplitudes from 1.7 down to 0.09 mmag. The photometry also showed variations with a period of about four days. To investigate the nature of the longer period, 45 days of time-resolved spectroscopy was obtained at the Thueringer Landessternwarte Tautenburg in 2004. The radial velocity measurements indicate that HD 61199 is a triple system. A delta Scuti pulsator with a rich eigenspectrum in a multiple system is promising for asteroseismology. Our objectives were to identify which of the stars in the system is the delta Scuti variable and to obtain the orbital elements of the system and the fundamental parameters of the individual components, which are constrained by the pulsation frequencies of the delta Scuti star. Classical Fourier techniques and least-squares multi-sinusoidal fits were applied to the MOST photometry to identify the pulsation frequencies. The groundbased spectroscopy was analysed with least-squares-deconvolution (LSD) techniques, and the orbital elements derived with the KOREL and ORBITX routines. Asteroseismic models were also generated. The photometric and spectroscopic data are compatible with a triple system consisting of a close binary with an orbital period of 3.57 days and a delta Scuti companion (HD 61199,A) as the most luminous component. The delta Scuti star is a rapid rotator with about vsin i = 130 km/s and an upper mass limit of about 2.1 Msun. For the close binary components, we find they are of nearly equal mass, with lower mass limits of about 0.7 Msun.Comment: 11 pages, 14 figures, accepted by A&

    Consistent Anisotropic Repulsions for Simple Molecules

    Full text link
    We extract atom-atom potentials from the effective spherical potentials that suc cessfully model Hugoniot experiments on molecular fluids, e.g., O2O_2 and N2N_2. In the case of O2O_2 the resulting potentials compare very well with the atom-atom potentials used in studies of solid-state propertie s, while for N2N_2 they are considerably softer at short distances. Ground state (T=0K) and room temperatu re calculations performed with the new NNN-N potential resolve the previous discrepancy between experimental and theoretical results.Comment: RevTeX, 5 figure

    Quantum Mechanical Aspects of Cell Microtubules: Science Fiction or Realistic Possibility?

    Full text link
    Recent experimental research with marine algae points towards quantum entanglement at ambient temperature, with correlations between essential biological units separated by distances as long as 20 Angstr\"oms. The associated decoherence times, due to environmental influences, are found to be of order 400 fs. This prompted some authors to connect such findings with the possibility of some kind of quantum computation taking place in these biological entities: within the decoherence time scales, the cell "quantum calculates" the optimal "path" along which energy and signal would be transported more efficiently. Prompted by these experimental results, in this talk I remind the audience of a related topic proposed several years ago in connection with the possible r\^ole of quantum mechanics and/or field theory on dissipation-free energy transfer in microtubules (MT), which constitute fundamental cell substructures. Quantum entanglement between tubulin dimers was argued to be possible, provided there exists sufficient isolation from other environmental cell effects. The model was based on certain ferroelectric aspects of MT. In the talk I review the model and the associated experimental tests so far and discuss future directions, especially in view of the algae photo-experiments.Comment: 31 pages latex, 11 pdf figures, uses special macros, Invited Plenary Talk at DICE2010, Castello Pasquini, Castiglioncello (Italy), September 13-18 201

    Fermi-liquid instabilities at magnetic quantum phase transitions

    Full text link
    This review discusses instabilities of the Fermi-liquid state of conduction electrons in metals with particular emphasis on magnetic quantum critical points. Both the existing theoretical concepts and experimental data on selected materials are presented; with the aim of assessing the validity of presently available theory. After briefly recalling the fundamentals of Fermi-liquid theory, the local Fermi-liquid state in quantum impurity models and their lattice versions is described. Next, the scaling concepts applicable to quantum phase transitions are presented. The Hertz-Millis-Moriya theory of quantum phase transitions is described in detail. The breakdown of the latter is analyzed in several examples. In the final part experimental data on heavy-fermion materials and transition-metal alloys are reviewed and confronted with existing theory.Comment: 62 pages, 29 figs, review article for Rev. Mod. Phys; (v2) discussion extended, refs added; (v3) shortened; final version as publishe
    corecore