790 research outputs found
High mobility n-channel organic field-effect transistors based on soluble C60 and C70 fullerene derivatives
We report on n-channel organic field-effect transistors (OFETs) based on the solution processable methanofullerenes [6,6]-phenyl-C61-butyric acid ester ([60]PCBM) and [6,6]-phenyl-C71-butyric acid methyl ester ([70]PCBM). Despite the fact that both derivatives form glassy films when processed from solution, their electron mobilities are high and on the order of 0.21 cm2/V s and 0.1 cm2/V s, for [60]PCBM and [70]PCBM, respectively. Although the derived mobility of [60]PCBM is comparable to the best values reported in the literature, the electron mobility of [70]PCBM is the highest value reported to date for any C70 based molecule. We note that this is the only report in which C60 and C70 methanofullerenes exhibit comparable electron mobilities. The present findings could have significant implications in the area of large-area organic electronics and organic photovoltaics where C60 derivatives have so far been the most widely used electron acceptor materials.
Determination of a Wave Function Functional
In this paper we propose the idea of expanding the space of variations in
standard variational calculations for the energy by considering the wave
function to be a functional of a set of functions , rather than a function. In this manner a greater flexibility to
the structure of the wave function is achieved. A constrained search in a
subspace over all functions such that the wave function functional
satisfies a constraint such as normalization or the Fermi-Coulomb
hole charge sum rule, or the requirement that it lead to a physical observable
such as the density, diamagnetic susceptibility, etc. is then performed. A
rigorous upper bound to the energy is subsequently obtained by variational
minimization with respect to the parameters in the approximate wave function
functional. Hence, the terminology, the constrained-search variational method.
The \emph{rigorous} construction of such a constrained-search--variational wave
function functional is demonstrated by example of the ground state of the
Helium atom.Comment: 10 pages, 2 figures, changes made, references adde
Role of IRAK-M in Alcohol Induced Liver Injury
Increasing evidence suggests that innate immunity plays an important role in alcohol-induced liver injury and most studies have focused on positive regulation of innate immunity. The main objective of this study was to investigate the negative regulator of innate immunity, IL-1/Toll-like receptor (TLR) signaling pathways and interleukin receptor-associated kinase-M (IRAK-M) in alcoholic liver injury. We established an alcohol-induced liver injury model using wild type and IRAK-M deficient B6 mice and investigated the possible mechanisms. We found that in the absence of IRAK-M, liver damage by alcohol was worse with higher alanine transaminase (ALT), more immune cell infiltration and increased numbers of IFNγ producing cells. We also found enhanced phagocytic activity in CD68+ cells. Moreover, our results revealed altered gut bacteria after alcohol consumption and this was more striking in the absence of IRAK-M. Our study provides evidence that IRAK-M plays an important role in alcohol-induced liver injury and IRAK-M negatively regulates the innate and possibly the adaptive immune response in the liver reacting to acute insult by alcohol. In the absence of IRAK-M, the hosts developed worse liver injury, enhanced gut permeability and altered gut microbiota
The Fate of the Merger Remnant in GW170817 and its Imprint on the Jet Structure
The first neutron star binary merger detected in gravitational waves,
GW170817 and the subsequent detection of its emission across the
electromagnetic spectrum showed that these systems are viable progenitors of
short -ray bursts (sGRB). The afterglow signal of GW170817 has been
found to be consistent with a structured GRB jet seen off-axis, requiring
significant amounts of relativistic material at large angles. This trait can be
attributed to the interaction of the relativistic jet with the external wind
medium. Here we perform numerical simulations of relativistic jets interacting
with realistic wind environments in order to explore how the properties of the
wind and central engine affect the structure of successful jets. We find that
the angular energy distribution of the jet depends primarily on the ratio
between the lifetime of the jet and the time it takes the merger remnant to
collapse. We make use of these simulations to constrain the time it took for
the merger remnant in GW170817 to collapse into a black hole based on the
angular structure of the jet as inferred from afterglow observations.
We conclude that the lifetime of the merger remnant in GW170817 was s, which, after collapse, triggered the formation of the jet.Comment: 13 figures, 15 pages, accepted in Ap
CPDW Project. Assessment of Cytotoxicological Potential of Products in Contact with Drinking Water.
The investigations described in this report were conducted as part of the European Project "Development of Harmonised tests to be used in the European Approval Scheme (EAS) concerning Construction Products in contact with Drinking Water (CPDW)", under Contract
no. EVK1-CT2000-00052. This project is financially supported by the European Commission, the national authorities of Denmark, France, Germany, Portugal and the United Kingdom and the material suppliers in these countries and Europe, respectively. Work Package 2 concerned the cytotoxicity properties of materials of this project. The institutes participating in the investigations and discussions in this work package are listed below.JRC.DDG.H-Institute for environment and sustainability (Ispra
Phosphates as Assisting Groups in Glycan Synthesis
In nature, phosphates are added to and cleaved from molecules to direct biological pathways. The concept was adapted to overcome limitations in the chemical synthesis of complex oligosaccharides. Phosphates were chemically placed on synthetic glycans to ensure site-specific enzymatic elongation by sialylation. In addition, the deliberate placement of phosphates helped to solubilize and isolate aggregating glycans. Upon traceless removal of the phosphates by enzymatic treatment with alkaline phosphatase, the native glycan structure was revealed, and the assembly of glycan nanostructures was triggered
Linker, loading, and reaction scale influence automated glycan assembly
Automated glycan assembly (AGA) affords collections of well-defined glycans in a short amount of time. We systematically analyzed how parameters connected to the solid support affect the AGA outcome for three different glycan sequences. We showed that, while loading and reaction scale did not significantly influence the AGA outcome, the chemical nature of the linker dramatically altered the isolated yields. We identified that the major determinants of AGA yields are cleavage from the solid support and post-AGA purification steps
- …