90 research outputs found

    After LUX: The LZ Program

    Full text link
    The LZ program consists of two stages of direct dark matter searches using liquid Xe detectors. The first stage will be a 1.5-3 tonne detector, while the last stage will be a 20 tonne detector. Both devices will benefit tremendously from research and development performed for the LUX experiment, a 350 kg liquid Xe dark matter detector currently operating at the Sanford Underground Laboratory. In particular, the technology used for cryogenics and electrical feedthroughs, circulation and purification, low-background materials and shielding techniques, electronics, calibrations, and automated control and recovery systems are all directly scalable from LUX to the LZ detectors. Extensive searches for potential background sources have been performed, with an emphasis on previously undiscovered background sources that may have a significant impact on tonne-scale detectors. The LZ detectors will probe spin-independent interaction cross sections as low as 5E-49 cm2 for 100 GeV WIMPs, which represents the ultimate limit for dark matter detection with liquid xenon technology.Comment: Conference proceedings from APS DPF 2011. 9 pages, 6 figure

    First Results from the LUX Dark Matter Experiment at the Sanford Underground Research Facility

    Get PDF
    The Large Underground Xenon (LUX) experiment is a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota). The LUX cryostat was filled for the first time in the underground laboratory in February 2013. We report results of the first WIMP search data set, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data with a fiducial volume of 118 kg. A profile-likelihood analysis technique shows our data to be consistent with the background-only hypothesis, allowing 90% confidence limits to be set on spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of 7.6 × 10−46 cm2 at a WIMP mass of 33 GeV=c2. We find that the LUX data are in disagreement with lowmass WIMP signal interpretations of the results from several recent direct detection experiments

    First Results from the LUX Dark Matter Experiment at the Sanford Underground Research Facility

    Get PDF
    The Large Underground Xenon (LUX) experiment, a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), was cooled and filled in February 2013. We report results of the first WIMP search dataset, taken during the period April to August 2013, presenting the analysis of 85.3 live-days of data with a fiducial volume of 118 kg. A profile-likelihood analysis technique shows our data to be consistent with the background-only hypothesis, allowing 90% confidence limits to be set on spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of 7.6×10−467.6 \times 10^{-46} cm2^{2} at a WIMP mass of 33 GeV/c2^2. We find that the LUX data are in strong disagreement with low-mass WIMP signal interpretations of the results from several recent direct detection experiments.Comment: Accepted by Phys. Rev. Lett. Appendix A included as supplementary material with PRL articl

    First Results from the LUX Dark Matter Experiment at the Sanford Underground Research Facility

    Get PDF
    The Large Underground Xenon (LUX) experiment, a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), was cooled and filled in February 2013. We report results of the first WIMP search dataset, taken during the period April to August 2013, presenting the analysis of 85.3 live-days of data with a fiducial volume of 118 kg. A profile-likelihood analysis technique shows our data to be consistent with the background-only hypothesis, allowing 90% confidence limits to be set on spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of 7.6×10−467.6 \times 10^{-46} cm2^{2} at a WIMP mass of 33 GeV/c2^2. We find that the LUX data are in strong disagreement with low-mass WIMP signal interpretations of the results from several recent direct detection experiments.Comment: Accepted by Phys. Rev. Lett. Appendix A included as supplementary material with PRL articl

    An Ultra-Low Background PMT for Liquid Xenon Detectors

    Get PDF
    Results are presented from radioactivity screening of two models of photomultiplier tubes designed for use in current and future liquid xenon experiments. The Hamamatsu 5.6 cm diameter R8778 PMT, used in the LUX dark matter experiment, has yielded a positive detection of four common radioactive isotopes: 238U, 232Th, 40K, and 60Co. Screening of LUX materials has rendered backgrounds from other detector materials subdominant to the R8778 contribution. A prototype Hamamatsu 7.6 cm diameter R11410 MOD PMT has also been screened, with benchmark isotope counts measured at <0.4 238U / <0.3 232Th / <8.3 40K / 2.0+-0.2 60Co mBq/PMT. This represents a large reduction, equal to a change of \times 1/24 238U / \times 1/9 232Th / \times 1/8 40K per PMT, between R8778 and R11410 MOD, concurrent with a doubling of the photocathode surface area (4.5 cm to 6.4 cm diameter). 60Co measurements are comparable between the PMTs, but can be significantly reduced in future R11410 MOD units through further material selection. Assuming PMT activity equal to the measured 90% upper limits, Monte Carlo estimates indicate that replacement of R8778 PMTs with R11410 MOD PMTs will change LUX PMT electron recoil background contributions by a factor of \times1/25 after further material selection for 60Co reduction, and nuclear recoil backgrounds by a factor of \times 1/36. The strong reduction in backgrounds below the measured R8778 levels makes the R11410 MOD a very competitive technology for use in large-scale liquid xenon detectors.Comment: v2 updated to include content after reviewer comments (Sep 2012
    • …
    corecore