1,732 research outputs found

    A NEW APPROACH TO ANALYSING CERVICAL SPINAL MOTION

    Get PDF
    INTRODUCTION Several investigations on the problem of cervical spine motion describe the difficulties of measuring the movement exactly. Those models have to deal with the difficulties to fixate something at the human head and to track the range of motion in degrees concerning the three directions of movement, flexiodextension, lateral bending and rotation. The only objective method of measuring cervical spine movement and CO/C 1 or C 1lC2 displacements is the functional computer tomogram as described by Dvorak et. al. (1989). The aim of our survey has been to differ between the "normal" and pathologic cervical spine (after whip leash injuries, disc diseases or spondylarthrosis in sport) concerning with the range of movement and angular velocity. l b o Groups of 15 probants have been tested by a new computer-controlled setup. By using a three-dimensional motion-analysis-system special rigid-body software has been developed to calculate the cervical spine motion in all three coordinate directions (Truesdell & Noll, 1965). The first time it is possible to get results about the movement and their time-derivations. These angles and the angular velocities were traced for 15 normal individuals and 15 persons suffering with cervical spine problems. The setup for the tested patients was not more then a small frame like sunglasses which gives us an exact information about the movement in space. This information gives accurate data to calculate the amount of motion concerning the patients personal orientation in space and can be additionally used to compute the coupled motions to the probants reference coordinate system. We found significant differences in the range of motion between normal individuals as reference group and patients with cervical spine problems in all defined directions. CONCLUSIONS One conclusion, was that there were possibilities to measure those differences in cervical spine motion by the presented biomechanical measurement-setup very easily. The setup furthermore is capable of getting exact results about rang of motion, coupled motion end their time-derivations very fast and without any x-ray exposition for the patient. This possibilities and the good results are very important to judge problems after "whip lash injuries" and other cervical spine diseases in sport. REFERENCES Dvorak, A. et. al. (1989): Functional evaluation of the spinal cord by magnetic imaging in patients with rheumatoid arthritis and instability of upper cervical spine, Spine 14 (10); 1057- 1064. Truesdell, C.; W. No11 (1965): The nonlinear field theories of mechanics - Kinematics, in: Handbuch der Physik, von: S. Fliigge, Springer, New York

    Anomalous Behavior of Ru for Catalytic Oxidation: A Theoretical Study of the Catalytic Reaction CO + 1/2 O_2 --> CO_2

    Full text link
    Recent experiments revealed an anomalous dependence of carbon monoxide oxidation at Ru(0001) on oxygen pressure and a particularly high reaction rate. Below we report density functional theory calculations of the energetics and reaction pathways of the speculated mechanism. We will show that the exceptionally high rate is actuated by a weakly but nevertheless well bound (1x1) oxygen adsorbate layer. Furthermore it is found that reactions via scattering of gas-phase CO at the oxygen covered surface may play an important role. Our analysis reveals, however, that reactions via adsorbed CO molecules (the so-called Langmuir-Hinshelwood mechanism) dominate.Comment: 5 pages, 4 figures, Phys. Rev. Letters, Feb. 1997, in prin

    Towards a first-principles theory of surface thermodynamics and kinetics

    Get PDF
    Understanding of the complex behavior of particles at surfaces requires detailed knowledge of both macroscopic and microscopic processes that take place; also certain processes depend critically on temperature and gas pressure. To link these processes we combine state-of-the-art microscopic, and macroscopic phenomenological, theories. We apply our theory to the O/Ru(0001) system and calculate thermal desorption spectra, heat of adsorption, and the surface phase diagram. The agreement with experiment provides validity for our approach which thus identifies the way for a predictive simulation of surface thermodynamics and kinetics.Comment: 4 pages including 3 figures. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Sampling properties of random graphs: the degree distribution

    Full text link
    We discuss two sampling schemes for selecting random subnets from a network: Random sampling and connectivity dependent sampling, and investigate how the degree distribution of a node in the network is affected by the two types of sampling. Here we derive a necessary and sufficient condition that guarantees that the degree distribution of the subnet and the true network belong to the same family of probability distributions. For completely random sampling of nodes we find that this condition is fulfilled by classical random graphs; for the vast majority of networks this condition will, however, not be met. We furthermore discuss the case where the probability of sampling a node depends on the degree of a node and we find that even classical random graphs are no longer closed under this sampling regime. We conclude by relating the results to real {\it E.coli} protein interaction network data.Comment: accepted for publication in Phys.Rev.

    Anisotropy of Growth of the Close-Packed Surfaces of Silver

    Full text link
    The growth morphology of clean silver exhibits a profound anisotropy: The growing surface of Ag(111) is typically very rough while that of Ag(100) is smooth and flat. This serious and important difference is unexpected, not understood, and hitherto not observed for any other metal. Using density functional theory calculations of self-diffusion on flat and stepped Ag(100) we find, for example, that at flat regions a hopping mechanism is favored, while across step edges diffusion proceeds by an exchange process. The calculated microscopic parameters explain the experimentally reported growth properties.Comment: RevTeX, 4 pages, 3 figures in uufiles form, to appear in Phys. Rev. Let

    Anisotropy effects in a mixed quantum-classical Heisenberg model in two dimensions

    Full text link
    We analyse a specific two dimensional mixed spin Heisenberg model with exchange anisotropy, by means of high temperature expansions and Monte Carlo simulations. The goal is to describe the magnetic properties of the compound (NBu_{4})_{2}Mn_{2}[Cu(opba)]_{3}\cdot 6DMSO\cdot H_{2}O which exhibits a ferromagnetic transition at Tc=15KT_{c}=15K. Extrapolating our analysis on the basis of renormalisation group arguments, we find that this transition may result from a very weak anisotropy effect.Comment: 8 pages, 10 Postscript figure

    Thermodynamics of a mixed quantum-classical Heisenberg model in two dimensions

    Full text link
    We study the planar antiferromagnetic Heisenberg model on a decorated hexagonal lattice, involving both classical spins (occupying the vertices) and quantum spins (occupying the middle of the links). This study is motivated by the description of a recently synthesized molecular magnetic compound. First, we trace out the spin 1/2 degrees of freedom to obtain a fully classical model with an effective ferromagnetic interaction. Then, using high temperature expansions and Monte Carlo simulations, we analyse its thermal and magnetic properties. We show that it provides a good quantitative description of the magnetic susceptibility of the molecular magnet in its paramagnetic phase.Comment: Revtex, 6 pages, 4 included postscript figures, fig.1 upon request to [email protected] . To appear in J. of Physic C (condensed matter

    Theoretical study of O adlayers on Ru(0001)

    Full text link
    Recent experiments performed at high pressures indicate that ruthenium can support unusually high concentrations of oxygen at the surface. To investigate the structure and stability of high coverage oxygen structures, we performed density functional theory calculations, within the generalized gradient approximation, for O adlayers on Ru(0001) from low coverage up to a full monolayer. We achieve quantitative agreement with previous low energy electron diffraction intensity analyses for the (2x2) and (2x1) phases and predict that an O adlayer with a (1x1) periodicity and coverage of 1 monolayer can form on Ru(0001), where the O adatoms occupy hcp-hollow sites.Comment: RevTeX, 6 pages, 4 figure
    corecore