34 research outputs found

    Experience gained at the Ural Turbine Works with retrofitting steam turbine units for thermal power stations

    Full text link
    Examples of projects on retrofitting, modernizing, and renovating steam turbine units at thermal power stations implemented with participation of the Ural Turbine Works are given. Advanced construction and layout solutions were used in implementing these projects both on the territory of Russia and abroad. © 2013 Pleiades Publishing, Ltd

    Steam turbines produced by the Ural Turbine Works for combined-cycle plants

    Full text link
    The most interesting and innovative solutions adopted in the projects of steam turbines for combined-cycle plants with capacities from 115 to 900 MW are pointed out. The development of some ideas and components from the first projects to subsequent ones is shown. © 2013 Pleiades Publishing, Ltd

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    The cogeneration steam turbine of the tp-35/40-8.8 type

    Full text link
    The main performance characteristics of the turbine, descriptions of the electrohydraulic control and protection system (EHCPS), the heat flow diagram, arrangement decisions, and motivation for selecting them, are given. The steam turbine presented by the Ural Turbine Works (UTW) is intended for replacing the VPT-25 turbine the service life of which has already expired at the Novokuybyshevsk CHP plant. The mixed- pressure turbine will operate in combination of the double-circuit heat recovery boiler (HRB) in a parallel scheme. High-pressure (HP) steam will be supplied from the main steam header to which high-pressure steam from the power boilers and the HRB will be fed, while low-pressure (LP) steam will be supplied directly from the HRB. For the turbine, nozzle steam distribution and the two-row control stage are adopted. The tur- bine has a process steam extraction line with its stop and control valve and heating steam extraction line lead- ing to the main steam collector. © Pleiades Publishing, Inc., 2012

    The cogeneration steam turbine of the T-63/76-8.8 type for a series of PGU-300 combined cycle power plants

    Full text link
    This paper describes in detail the design of the T-63/76-8.8 steam turbine manufactured by Ural Turbine Works (refurbished significantly), its electrohydraulic control and protection system made according to the current requirements on control and protection, the heat flow diagram, and arrangement of the tur- bine. The T-63/76-8.8 steam turbine is intended to be used in double-shaft double-circuit combined-cycle monoblocks at a number of thermal power plants currently under construction. The turbine has a great future, since it may be employed in various combinations with gas turbine units having the output of 150-170 MW that are manufactured by virtually all firms. © Pleiades Publishing, Inc., 2012

    The cogeneration steam turbine of the T-40/50-8.8 type for the combined cycle power plant PGU-115

    Full text link
    This paper describes the design of the steam turbine intended for a single-unit two-shaft com-bined-cycle plant and its main systems, the heat flow diagram, and turbine plant arrangement. The turbine should operate as part of the combined-cycle power plant that will be constructed on the basis of the modern PG6111FA gas turbine manufactured in the USA. © Pleiades Publishing, Inc., 2012
    corecore