11,609 research outputs found
Frequency-modulated continuous-wave LiDAR compressive depth-mapping
We present an inexpensive architecture for converting a frequency-modulated
continuous-wave LiDAR system into a compressive-sensing based depth-mapping
camera. Instead of raster scanning to obtain depth-maps, compressive sensing is
used to significantly reduce the number of measurements. Ideally, our approach
requires two difference detectors. % but can operate with only one at the cost
of doubling the number of measurments. Due to the large flux entering the
detectors, the signal amplification from heterodyne detection, and the effects
of background subtraction from compressive sensing, the system can obtain
higher signal-to-noise ratios over detector-array based schemes while scanning
a scene faster than is possible through raster-scanning. %Moreover, we show how
a single total-variation minimization and two fast least-squares minimizations,
instead of a single complex nonlinear minimization, can efficiently recover
high-resolution depth-maps with minimal computational overhead. Moreover, by
efficiently storing only data points from measurements of an
pixel scene, we can easily extract depths by solving only two linear equations
with efficient convex-optimization methods
Fast Hadamard transforms for compressive sensing of joint systems: measurement of a 3.2 million-dimensional bi-photon probability distribution
We demonstrate how to efficiently implement extremely high-dimensional
compressive imaging of a bi-photon probability distribution. Our method uses
fast-Hadamard-transform Kronecker-based compressive sensing to acquire the
joint space distribution. We list, in detail, the operations necessary to
enable fast-transform-based matrix-vector operations in the joint space to
reconstruct a 16.8 million-dimensional image in less than 10 minutes. Within a
subspace of that image exists a 3.2 million-dimensional bi-photon probability
distribution. In addition, we demonstrate how the marginal distributions can
aid in the accuracy of joint space distribution reconstructions
Compressive Direct Imaging of a Billion-Dimensional Optical Phase-Space
Optical phase-spaces represent fields of any spatial coherence, and are
typically measured through phase-retrieval methods involving a computational
inversion, interference, or a resolution-limiting lenslet array. Recently, a
weak-values technique demonstrated that a beam's Dirac phase-space is
proportional to the measurable complex weak-value, regardless of coherence.
These direct measurements require scanning through all possible
position-polarization couplings, limiting their dimensionality to less than
100,000. We circumvent these limitations using compressive sensing, a numerical
protocol that allows us to undersample, yet efficiently measure
high-dimensional phase-spaces. We also propose an improved technique that
allows us to directly measure phase-spaces with high spatial resolution and
scalable frequency resolution. With this method, we are able to easily measure
a 1.07-billion-dimensional phase-space. The distributions are numerically
propagated to an object placed in the beam path, with excellent agreement. This
protocol has broad implications in signal processing and imaging, including
recovery of Fourier amplitudes in any dimension with linear algorithmic
solutions and ultra-high dimensional phase-space imaging.Comment: 7 pages, 5 figures. Added new larger dataset and fixed typo
Position-Momentum Bell-Nonlocality with Entangled Photon Pairs
Witnessing continuous-variable Bell nonlocality is a challenging endeavor,
but Bell himself showed how one might demonstrate this nonlocality. Though Bell
nearly showed a violation using the CHSH inequality with sign-binned
position-momentum statistics of entangled pairs of particles measured at
different times, his demonstration is subject to approximations not realizable
in a laboratory setting. Moreover, he doesn't give a quantitative estimation of
the maximum achievable violation for the wavefunction he considers. In this
article, we show how his strategy can be reimagined using the transverse
positions and momenta of entangled photon pairs measured at different
propagation distances, and we find that the maximum achievable violation for
the state he considers is actually very small relative to the upper limit of
. Although Bell's wavefunction does not produce a large violation of
the CHSH inequality, other states may yet do so.Comment: 6 pages, 3 figure
Demonstrating Continuous Variable EPR Steering in spite of Finite Experimental Capabilities using Fano Steering Bounds
We show how one can demonstrate continuous-variable Einstein-Podolsky-Rosen
(EPR) steering without needing to characterize entire measurement probability
distributions. To do this, we develop a modified Fano inequality useful for
discrete measurements of continuous variables, and use it to bound the
conditional uncertainties in continuous-variable entropic EPR-steering
inequalities. With these bounds, we show how one can hedge against experimental
limitations including a finite detector size, dead space between pixels, and
any such factors that impose an incomplete sampling of the true measurement
probability distribution. Furthermore, we use experimental data from the
position and momentum statistics of entangled photon pairs in parametric
downconversion to show that this method is sufficiently sensitive for practical
use.Comment: 7 pages, 2 figure
Shifting the Quantum-Classical Boundary: Theory and Experiment for Statistically Classical Optical Fields
The growing recognition that entanglement is not exclusively a quantum
property, and does not even originate with Schr\"odinger's famous remark about
it [Proc. Camb. Phil. Soc. 31, 555 (1935)], prompts examination of its role in
marking the quantum-classical boundary. We have done this by subjecting
correlations of classical optical fields to new Bell-analysis experiments, and
report here values of the Bell parameter greater than . This
is many standard deviations outside the limit established by the
Clauser-Horne-Shimony-Holt (CHSH) Bell inequality [Phys. Rev. Lett. 23, 880
(1969)], in agreement with our theoretical classical prediction, and not far
from the Tsirelson limit . These results cast a new light
on the standard quantum-classical boundary description, and suggest a
reinterpretation of it.Comment: Comments and Remarks are warmly welcome! arXiv admin note: text
overlap with arXiv:1406.333
Ultra-fast mission analysis routine for Apollo Block 2 environmental control system radiators Final report
Computer program for rapid mission analysis of Apollo Block 2 environmental control system radiator
Purification and detection of entangled coherent states
In [J. C. Howell and J. A. Yeazell, Phys. Rev. A 62, 012102 (2000)], a
proposal is made to generate entangled macroscopically distinguishable states
of two spatially separated traveling optical modes. We model the decoherence
due to light scattering during the propagation along an optical transmission
line and propose a setup allowing an entanglement purification from a number of
preparations which are partially decohered due to transmission. A purification
is achieved even without any manual intervention. We consider a nondemolition
configuration to measure the purity of the state as contrast of interference
fringes in a double-slit setup. Regarding the entangled coherent states as a
state of a bipartite quantum system, a close relationship between purity and
entanglement of formation can be obtained. In this way, the contrast of
interference fringes provides a direct means to measure entanglement.Comment: 9 pages, 6 figures, using Revtex
Thanks, but no thanks: women's avoidance of help-seeking in the context of a dependency-related stereotype
The stereotype that women are dependent on men is a commonly verbalized, potentially damaging aspect of benevolent sexism. We investigated how women may use behavioral disconfirmation of the personal applicability of the stereotype to negotiate such sexism. In an experiment (N = 86), we manipulated female college studentsâ awareness that women may be stereotyped by men as dependent. We then placed participants in a situation where they needed help. Women made aware of the dependency stereotype (compared to controls who were not) were less willing to seek help. They also displayed a stronger negative correlation between help-seeking and post help-seeking affect - such that the more help they sought, the worse they felt. We discuss the relevance of these findings for research concerning womenâs help-seeking and their management of sexist stereotyping in everyday interaction. We also consider the implications of our results for those working in domains such as healthcare, teaching and counseling, where interaction with individuals in need and requiring help is common
- âŠ