4,223 research outputs found
Experimental quantum verification in the presence of temporally correlated noise
Growth in the complexity and capabilities of quantum information hardware
mandates access to practical techniques for performance verification that
function under realistic laboratory conditions. Here we experimentally
characterise the impact of common temporally correlated noise processes on both
randomised benchmarking (RB) and gate-set tomography (GST). We study these
using an analytic toolkit based on a formalism mapping noise to errors for
arbitrary sequences of unitary operations. This analysis highlights the role of
sequence structure in enhancing or suppressing the sensitivity of quantum
verification protocols to either slowly or rapidly varying noise, which we
treat in the limiting cases of quasi-DC miscalibration and white noise power
spectra. We perform experiments with a single trapped Yb ion as a
qubit and inject engineered noise () to probe protocol
performance. Experiments on RB validate predictions that the distribution of
measured fidelities over sequences is described by a gamma distribution varying
between approximately Gaussian for rapidly varying noise, and a broad, highly
skewed distribution for the slowly varying case. Similarly we find a strong
gate set dependence of GST in the presence of correlated errors, leading to
significant deviations between estimated and calculated diamond distances in
the presence of correlated errors. Numerical simulations demonstrate
that expansion of the gate set to include negative rotations can suppress these
discrepancies and increase reported diamond distances by orders of magnitude
for the same error processes. Similar effects do not occur for correlated
or errors or rapidly varying noise processes,
highlighting the critical interplay of selected gate set and the gauge
optimisation process on the meaning of the reported diamond norm in correlated
noise environments.Comment: Expanded and updated analysis of GST, including detailed examination
of the role of gauge optimization in GST. Full GST data sets and
supplementary information available on request from the authors. Related
results available from
http://www.physics.usyd.edu.au/~mbiercuk/Publications.htm
The Chemistry of Extragalactic Globular Clusters
We present preliminary results of VLT/FORS spectroscopy of globular clusters
in nearby early-type galaxies. Our project aims at studying the chemistry and
determine the ages of globular cluster (sub-)populations. First results
indicate that the different galaxies host from little to significant
intermediate-age populations, and that the latter have alpha-element over iron
ratios closer to solar than the old population that show an alpha-element
enhancement similar to the diffuse stellar light.Comment: 4 pages (incl 2 figures) to appear in the proceedings of
"Extragalactic Globular Cluster Systems", ed.M.Kissler-Patig, Springer; see
also related contributions by T.H.Puzia and M.Hempel et a
Properties of 3-manifolds for relativists
In canonical quantum gravity certain topological properties of 3-manifolds
are of interest. This article gives an account of those properties which have
so far received sufficient attention, especially those concerning the
diffeomorphism groups of 3-manifolds. We give a summary of these properties and
list some old and new results concerning them. The appendix contains a
discussion of the group of large diffeomorphisms of the -handle 3-manifold.Comment: 20 pages. Plain-TeX, no figures, 1 Table (A4 format
COSMOGRAIL XVIII: time delays of the quadruply lensed quasar WFI2033-4723
We present new measurements of the time delays of WFI2033-4723. The data sets
used in this work include 14 years of data taken at the 1.2m Leonhard Euler
Swiss telescope, 13 years of data from the SMARTS 1.3m telescope at Las
Campanas Observatory and a single year of high-cadence and high-precision
monitoring at the MPIA 2.2m telescope. The time delays measured from these
different data sets, all taken in the R-band, are in good agreement with each
other and with previous measurements from the literature. Combining all the
time-delay estimates from our data sets results in Dt_AB = 36.2-0.8+0.7 days
(2.1% precision), Dt_AC = -23.3-1.4+1.2 days (5.6%) and Dt_BC = -59.4-1.3+1.3
days (2.2%). In addition, the close image pair A1-A2 of the lensed quasars can
be resolved in the MPIA 2.2m data. We measure a time delay consistent with zero
in this pair of images. We also explore the prior distributions of microlensing
time-delay potentially affecting the cosmological time-delay measurements of
WFI2033-4723. There is however no strong indication in our measurements that
microlensing time delay is neither present nor absent. This work is part of a
H0LiCOW series focusing on measuring the Hubble constant from WFI2033-4723.Comment: Submitted to Astronomy and Astrophysic
The genetic contribution of the NO system at the glutamatergic post-synapse to schizophrenia : further evidence and meta-analysis
NO is a pleiotropic signaling molecule and has an important role in cognition and emotion. In the brain, NO is produced by neuronal nitric oxide synthase (NOS-I, encoded by NOS1) coupled to the NMDA receptor via PDZ. interactions; this protein-protein interaction is disrupted upon binding of NOS1 adapter protein (encoded by NOS1AP) to NOS-I. As both NOS1 and NOS1AP were associated with schizophrenia, we here investigated these genes in greater detail by genotyping new samples and conducting a meta-analysis of our own and published data. In doing so, we confirmed association of both genes with schizophrenia and found evidence for their interaction in increasing risk towards disease. Our strongest finding was the NOS1 promoter SNP rs41279104, yielding an odds ratio of 1.29 in the meta-analysis. As findings from heterologous cell systems have suggested that the risk allele decreases gene expression, we studied the effect of the variant on NOS1 expression in human post-mortem brain samples and found that the risk allele significantly decreases expression of NOS1 in the prefrontal cortex. Bioinformatic analyses suggest that this might be due the replacement of six transcription factor binding sites by two new binding sites as a consequence of proxy SNPs. Taken together, our data argue that genetic variance in NOS1 resulting in lower prefrontal brain expression of this gene contributes to schizophrenia liability, and that NOS1 interacts with NOS1AP in doing so. The NOS1-NOS1AP PDZ interface may thus well constitute a novel target for small molecules in at least some forms of schizophrenia. PostprintPeer reviewe
The Strange Prospects for Astrophysics
The implications of the formation of strange quark matter in neutron stars
and in core-collapse supernovae is discussed with special emphasis on the
possibility of having a strong first order QCD phase transition at high baryon
densities. If strange quark matter is formed in core-collapse supernovae
shortly after the bounce, it causes the launch of a second outgoing shock which
is energetic enough to lead to a explosion. A signal for the formation of
strange quark matter can be read off from the neutrino spectrum, as a second
peak in antineutrinos is released when the second shock runs over the
neutrinosphere.Comment: 10 pages, 8 figures, invited talk given at the international
conference on strangeness in quark matter (SQM2008), Beijing, October 6-10,
Beijing, China, version to appear in J. Phys.
- …