2,238 research outputs found

    Microwave ISM Emission in the Green Bank Galactic Plane Survey: Evidence for Spinning Dust

    Full text link
    We observe significant dust-correlated emission outside of H II regions in the Green Bank Galactic Plane Survey (-4 < b < 4 degrees) at 8.35 and 14.35 GHz. The rising spectral slope rules out synchrotron and free-free emission as majority constituents at 14 GHz, and the amplitude is at least 500 times higher than expected thermal dust emission. When combined with the Rhodes (2.326 GHz), and WMAP (23-94 GHz) data it is possible to fit dust-correlated emission at 2.3-94 GHz with only soft synchrotron, free-free, thermal dust, and an additional dust-correlated component similar to Draine & Lazarian spinning dust. The rising component generally dominates free-free and synchrotron for \nu >~ 14 GHz and is overwhelmed by thermal dust at \nu > 60 GHz. The current data fulfill most of the criteria laid out by Finkbeiner et al. (2002) for detection of spinning dust.Comment: ApJ in press. 26 pages, 11 figures, figures jpeg compressed to save spac

    Joint Bayesian component separation and CMB power spectrum estimation

    Get PDF
    We describe and implement an exact, flexible, and computationally efficient algorithm for joint component separation and CMB power spectrum estimation, building on a Gibbs sampling framework. Two essential new features are 1) conditional sampling of foreground spectral parameters, and 2) joint sampling of all amplitude-type degrees of freedom (e.g., CMB, foreground pixel amplitudes, and global template amplitudes) given spectral parameters. Given a parametric model of the foreground signals, we estimate efficiently and accurately the exact joint foreground-CMB posterior distribution, and therefore all marginal distributions such as the CMB power spectrum or foreground spectral index posteriors. The main limitation of the current implementation is the requirement of identical beam responses at all frequencies, which restricts the analysis to the lowest resolution of a given experiment. We outline a future generalization to multi-resolution observations. To verify the method, we analyse simple models and compare the results to analytical predictions. We then analyze a realistic simulation with properties similar to the 3-yr WMAP data, downgraded to a common resolution of 3 degree FWHM. The results from the actual 3-yr WMAP temperature analysis are presented in a companion Letter.Comment: 23 pages, 16 figures; version accepted for publication in ApJ -- only minor changes, all clarifications. More information about the WMAP3 analysis available at http://www.astro.uio.no/~hke under the Research ta

    Galactic microwave emission at degree angular scales

    Get PDF
    We cross-correlate the Saskatoon Ka and Q-Band Cosmic Microwave Background (CMB) data with different maps to quantify possible foreground contamination. We detect a marginal correlation (2 sigma) with the Diffuse Infrared Background Experiment (DIRBE) 240, 140 and 100 microm maps, but we find no significant correlation with point sources, with the Haslam 408 MHz map or with the Reich and Reich 1420 MHz map. The rms amplitude of the component correlated with DIRBE is about 20% of the CMB signal. Interpreting this component as free-free emission, this normalization agrees with that of Kogut et al. (1996a; 1996b) and supports the hypothesis that the spatial correlation between dust and warm ionized gas observed on large angular scales persists to smaller angular scales. Subtracting this contribution from the CMB data reduces the normalization of the Saskatoon power spectrum by only a few percent.Comment: Minor revisions to match published version. 14 pages, with 2 figures included. Color figure and links at http://www.sns.ias.edu/~angelica/foreground.htm

    Wild capuchin monkeys adjust stone tools according to changing nut properties

    Get PDF
    Animals foraging in their natural environments need to be proficient at recognizing and responding to changes in food targets that affect accessibility or pose a risk. Wild bearded capuchin monkeys (Sapajus libidinosus) use stone tools to access a variety of nut species, including otherwise inaccessible foods. This study tests whether wild capuchins from Serra da Capivara National Park in Brazil adjust their tool selection when processing cashew (Anacardium spp.) nuts. During the ripening process of cashew nuts, the amount of caustic defensive substance in the nut mesocarp decreases. We conducted field experiments to test whether capuchins adapt their stone hammer selection to changing properties of the target nut, using stones of different weights and two maturation stages of cashew nuts. The results show that although fresh nuts are easier to crack, capuchin monkeys used larger stone tools to open them, which may help the monkeys avoid contact with the caustic hazard in fresh nuts. We demonstrate that capuchin monkeys are actively able to distinguish between the maturation stages within one nut species, and to adapt their foraging behaviour accordingly

    A Search for Sub-Millisecond Pulsars

    Full text link
    We have conducted a search of 19 southern Galactic globular clusters for sub-millisecond pulsars at 660 MHz with the Parkes 64-m radio telescope. To minimize dispersion smearing we used the CPSR baseband recorder, which samples the 20 MHz observing band at the Nyquist rate. By possessing a complete description of the signal we could synthesize an optimal filterbank in software, and in the case of globular clusters of known dispersion measure, much of the dispersion could be removed using coherent techniques. This allowed for very high time resolution (25.6 us in most cases), making our searches in general sensitive to sub-millisecond pulsars with flux densities greater than about 3 mJy at 50 cm. No new pulsars were discovered, placing important constraints on the proportion of pulsars with very short spin periods in these clusters.Comment: 8 pages, 3 figures, to appear in Ap

    The Temperature of the CMB at 10 GHz

    Full text link
    We report the results of an effort to measure the low frequency portion of the spectrum of the Cosmic Microwave Background Radiation (CMB), using a balloon-borne instrument called ARCADE (Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission). These measurements are to search for deviations from a thermal spectrum that are expected to exist in the CMB due to various processes in the early universe. The radiometric temperature was measured at 10 and 30 GHz using a cryogenic open-aperture instrument with no emissive windows. An external blackbody calibrator provides an in situ reference. A linear model is used to compare the radiometer output to a set of thermometers on the instrument. The unmodeled residuals are less than 50 mK peak-to-peak with a weighted RMS of 6 mK. Small corrections are made for the residual emission from the flight train, atmosphere, and foreground Galactic emission. The measured radiometric temperature of the CMB is 2.721 +/- 0.010 K at 10 GHz and 2.694 +/- 0.032 K at 30 GHz.Comment: 8 pages including 5 figures. Submitted to The Astrophysical Journa

    Effects of Foreground Contamination on the Cosmic Microwave Background Anisotropy Measured by MAP

    Full text link
    We study the effects of diffuse Galactic, far-infrared extragalactic source, and radio point source emission on the cosmic microwave background (CMB) anisotropy data anticipated from the MAP experiment. We focus on the correlation function and genus statistics measured from mock MAP foreground-contaminated CMB anisotropy maps generated in a spatially-flat cosmological constant dominated cosmological model. Analyses of the simulated MAP data at 90 GHz (0.3 deg FWHM resolution smoothed) show that foreground effects on the correlation function are small compared with cosmic variance. However, the Galactic emission, even just from the region with |b| > 20 deg, significantly affects the topology of CMB anisotropy, causing a negative genus shift non-Gaussianity signal. Given the expected level of cosmic variance, this effect can be effectively reduced by subtracting existing Galactic foreground emission models from the observed data. IRAS and DIRBE far-infrared extragalactic sources have little effect on the CMB anisotropy. Radio point sources raise the amplitude of the correlation function considerably on scales below 0.5 deg. Removal of bright radio sources above a 5 \sigma detection limit effectively eliminates this effect. Radio sources also result in a positive genus curve asymmetry (significant at 2 \sigma) on 0.5 deg scales. Accurate radio point source data is essential for an unambiguous detection of CMB anisotropy non-Gaussianity on these scales. Non-Gaussianity of cosmological origin can be detected from the foreground-subtracted CMB anisotropy map at the 2 \sigma level if the measured genus shift parameter |\Delta\nu| >= 0.02 (0.04) or if the measured genus asymmetry parameter |\Delta g| >= 0.03 (0.08) on a 0.3 (1.0) deg FWHM scale.Comment: 26 pages, 7 figures, Accepted for Publication in Astrophysical Journal (Some sentences and figures modified

    Evidence for a Weak Galactic Center Magnetic Field from Diffuse Low Frequency Nonthermal Radio Emission

    Get PDF
    New low-frequency 74 and 330 MHz observations of the Galactic center (GC) region reveal the presence of a large-scale (6\arcdeg\times 2\arcdeg) diffuse source of nonthermal synchrotron emission. A minimum energy analysis of this emission yields a total energy of (ϕ4/7f3/7)×1052\sim (\phi^{4/7}f^{3/7})\times 10^{52} ergs and a magnetic field strength of 6(ϕ/f)2/7\sim 6(\phi/f)^{2/7} \muG (where ϕ\phi is the proton to electron energy ratio and ff is the filling factor of the synchrotron emitting gas). The equipartition particle energy density is 1.2(ϕ/f)2/71.2(\phi/f)^{2/7} \evcm, a value consistent with cosmic-ray data. However, the derived magnetic field is several orders of magnitude below the 1 mG field commonly invoked for the GC. With this field the source can be maintained with the SN rate inferred from the GC star formation. Furthermore, a strong magnetic field implies an abnormally low GC cosmic-ray energy density. We conclude that the mean magnetic field in the GC region must be weak, of order 10 \muG (at least on size scales \ga 125\arcsec).Comment: 12 pages, 1 JPEG figure, uses aastex.sty; Accepted for publication, ApJL (2005, published

    The Tenerife Cosmic Microwave Background Maps: Observations and First Analysis

    Full text link
    The results of the Tenerife Cosmic Microwave Background (CMB) experiments are presented. These observations cover 5000 and 6500 square degrees on the sky at 10 and 15 GHz respectively centred around Dec.~ +35 degrees. The experiments are sensitive to multipoles l=10-30 which corresponds to the Sachs-Wolfe plateau of the CMB power spectra. The sensitivity of the results are ~31 and \~12 microK at 10 and 15 GHz respectively in a beam-size region (5 degrees FWHM). The data at 15 GHz show clear detection of structure at high Galactic latitude; the results at 10 GHz are compatible with these, but at lower significance. A likelihood analysis of the 10 and 15 GHz data at high Galactic latitude, assuming a flat CMB band power spectra gives a signal Delta T_l=30+10-8 microK (68 % C.L.). Including the possible contaminating effect due to the diffuse Galactic component, the CMB signal is Delta T_l=30+15-11 microK. These values are highly stable against the Galactic cut chosen. Assuming a Harrison-Zeldovich spectrum for the primordial fluctuations, the above values imply an expected quadrupole Q_RMS-PS=20+10-7 microK which confirms previous results from these experiments, and which are compatible with the COBE DMR.Comment: 17 pages, 7 figures. Submitted to Ap

    Detection of Gravitational Lensing in the Cosmic Microwave Background

    Full text link
    Gravitational lensing of the cosmic microwave background (CMB), a long-standing prediction of the standard cosmolgical model, is ultimately expected to be an important source of cosmological information, but first detection has not been achieved to date. We report a 3.4 sigma detection, by applying quadratic estimator techniques to all sky maps from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite, and correlating the result with radio galaxy counts from the NRAO VLA Sky Survey (NVSS). We present our methodology including a detailed discussion of potential contaminants. Our error estimates include systematic uncertainties from density gradients in NVSS, beam effects in WMAP, Galactic microwave foregrounds, resolved and unresolved CMB point sources, and the thermal Sunyaev-Zeldovich effect.Comment: 27 pages, 20 figure
    corecore