144 research outputs found

    Angular distribution in two-photon double ionization of helium by intense attosecond soft X-ray pulses

    Full text link
    We investigate two-photon double ionization of helium by intense (1015W/cm210^{15} W/cm^2) ultrashort (≈300\approx 300 as) soft X-ray pulses (E = 91.6 eV). The time-dependent two-electron Schr\"odinger equation is solved using a coupled channel method. We show that for ultrashort pulses the angular distribution of ejected electrons depends on the pulse duration and provides novel insights into the role of electron correlations in the two-electron photoemission process. The angular distribution at energies near the ``independent electron'' peaks is close to dipolar while it acquires in the ``valley'' of correlated emission a significant quadrupolar component within a few hundred attoseconds.Comment: 17 pages, 6 fig

    Collisions of Slow Highly Charged Ions with Surfaces

    Get PDF
    Progress in the study of collisions of multiply charged ions with surfaces is reviewed with the help of a few recent examples. They range from fundamental quasi-one electron processes to highly complex ablation and material modification processes. Open questions and possible future directions will be discussed.Comment: 13 pages, 16 figures, review pape

    Extended Classical Over-Barrier Model for Collisions of Highly Charged Ions with Conducting and Insulating Surfaces

    Full text link
    We have extended the classical over-barrier model to simulate the neutralization dynamics of highly charged ions interacting under grazing incidence with conducting and insulating surfaces. Our calculations are based on simple model rates for resonant and Auger transitions. We include effects caused by the dielectric response of the target and, for insulators, localized surface charges. Characteristic deviations regarding the charge transfer processes from conducting and insulating targets to the ion are discussed. We find good agreement with previously published experimental data for the image energy gain of a variety of highly charged ions impinging on Au, Al, LiF and KI crystals.Comment: 32 pages http://pikp28.uni-muenster.de/~ducree

    Ultralong-Range Rydberg Molecules in a Divalent-Atomic System

    Full text link
    We report the creation of ultralong-range Sr2_2 molecules comprising one ground-state 5s25s^2 1S0^1S_0 atom and one atom in a 5sns5sns 3S1^3S_1 Rydberg state for nn ranging from 29 to 36. Molecules are created in a trapped ultracold atomic gas using two-photon excitation near resonant with the 5s5p5s5p 3P1^3P_1 intermediate state, and their formation is detected through ground-state atom loss from the trap. The observed molecular binding energies are fit with the aid of first-order perturbation theory that utilizes a Fermi pseudopotential with effective ss-wave and pp-wave scattering lengths to describe the interaction between an excited Rydberg electron and a ground-state Sr atom.Comment: 5 pages, 2 figure

    Tunable Fano Resonances in Transport through Microwave Billiards

    Full text link
    We present a tunable microwave scattering device that allows the controlled variation of Fano line shape parameters in transmission through quantum billiards. Transport in this device is nearly fully coherent. By comparison with quantum calculations, employing the modular recursive Green's-function method, the scattering wave function and the degree of residual decoherence can be determined. The parametric variation of Fano line shapes in terms of interacting resonances is analyzed.Comment: 5 pages, 4 figures, submitted to Phys. Rev.

    Graphene quantum dots: Beyond a Dirac billiard

    Full text link
    We present realistic simulations of quantum confinement effects in ballistic graphene quantum dots with linear dimensions of 10 to 40 nm. We determine wavefunctions and energy level statistics in the presence of disorder resulting from edge roughness, charge impurities, or short-ranged scatterers. Marked deviations from a simple Dirac billiard for massless fermions are found. We find a remarkably stable dependence of the nearest-neighbor level spacing on edge roughness suggesting that the roughness of fabricated devices can be potentially characterized by the distribution of measured Coulomb blockade peaks.Comment: 5 figures, higher resolution available upon reques

    Creation of Rydberg Polarons in a Bose Gas

    Get PDF
    We report spectroscopic observation of Rydberg polarons in an atomic Bose gas. Polarons are created by excitation of Rydberg atoms as impurities in a strontium Bose-Einstein condensate. They are distinguished from previously studied polarons by macroscopic occupation of bound molecular states that arise from scattering of the weakly bound Rydberg electron from ground-state atoms. The absence of a pp-wave resonance in the low-energy electron-atom scattering in Sr introduces a universal behavior in the Rydberg spectral lineshape and in scaling of the spectral width (narrowing) with the Rydberg principal quantum number, nn. Spectral features are described with a functional determinant approach (FDA) that solves an extended Fr\"{o}hlich Hamiltonian for a mobile impurity in a Bose gas. Excited states of polyatomic Rydberg molecules (trimers, tetrameters, and pentamers) are experimentally resolved and accurately reproduced with FDA.Comment: 5 pages, 3 figure

    Probing Nonlocal Spatial Correlations in Quantum Gases with Ultra-long-range Rydberg Molecules

    Full text link
    We present photo-excitation of ultra-long-range Rydberg molecules as a probe of spatial correlations in quantum gases. Rydberg molecules can be created with well-defined internuclear spacing, set by the radius of the outer lobe of the Rydberg electron wavefunction RnR_n. By varying the principal quantum number nn of the target Rydberg state, the molecular excitation rate can be used to map the pair-correlation function of the trapped gas g(2)(Rn)g^{(2)}(R_n). We demonstrate this with ultracold Sr gases and probe pair-separation length scales ranging from Rn=1400−3200R_n = 1400 - 3200 a0a_0, which are on the order of the thermal de Broglie wavelength for temperatures around 1 ÎŒ\muK. We observe bunching for a single-component Bose gas of 84^{84}Sr and anti-bunching due to Pauli exclusion at short distances for a polarized Fermi gas of 87^{87}Sr, revealing the effects of quantum statistics.Comment: 6 pages, 5 figure
    • 

    corecore