research

Ultralong-Range Rydberg Molecules in a Divalent-Atomic System

Abstract

We report the creation of ultralong-range Sr2_2 molecules comprising one ground-state 5s25s^2 1S0^1S_0 atom and one atom in a 5sns5sns 3S1^3S_1 Rydberg state for nn ranging from 29 to 36. Molecules are created in a trapped ultracold atomic gas using two-photon excitation near resonant with the 5s5p5s5p 3P1^3P_1 intermediate state, and their formation is detected through ground-state atom loss from the trap. The observed molecular binding energies are fit with the aid of first-order perturbation theory that utilizes a Fermi pseudopotential with effective ss-wave and pp-wave scattering lengths to describe the interaction between an excited Rydberg electron and a ground-state Sr atom.Comment: 5 pages, 2 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions