9,833 research outputs found
Non-standard Dirac adjoint spinor: The emergence of a new dual
In this present communication we provide a new derivation of the Dirac dual
structure by employing a different approach from the originally proposed.
Following a general and rigorous mathematical process to compute the dual
structure, we investigate if is possible to break the existing "rigidity" in
its primordial formulation. For this task, firstly, we look towards to
understand the core of the Dirac spinors construction and then, we suggest to
built an alternative dual structure for the Dirac spinor, which preserve an
invariant norm under any transformation. Finally, we verify
if the prominent physical contents are maintained or if it is affected by such
construction.Comment: 7 pages, 0 figure
A-term inflation and the MSSM
The parameter space for A-term inflation is explored with . With p=6 and \lambda_p~1, the observed spectrum and
spectral tilt can be obtained with soft mass of order 10^2 GeV but not with a
much higher mass. The case p=3 requires \lambda_p~10^{-9} to 10^{-12}. The
ratio m/A requires fine-tuning, which may be justified on environmental
grounds. An extension of the MSSM to include non-renormalizable terms and/or
Dirac neutrino masses might support either A-term inflation or modular
inflation.Comment: 10 pages, 3 figures; Comments added, typos correcte
Type-4 spinors: transmuting from Elko to single-helicity spinors
In this communication we briefly report an unexpected theoretical discovery
which emerge from the mapping of Elko mass-dimension-one spinors into single
helicity spinors. Such procedure unveils a class of spinor which is classified
as type-4 spinor field within Lounesto classification. In this paper we explore
the underlying physical and mathematical contents of the type-4 spinor.Comment: 9 pages, 0 figure
Topological Quintessence
A global monopole (or other topological defect) formed during a recent phase
transition with core size comparable to the present Hubble scale, could induce
the observed accelerating expansion of the universe. In such a model,
topological considerations trap the scalar field close to a local maximum of
its potential in a cosmologically large region of space. We perform detailed
numerical simulations of such an inhomogeneous dark energy system (topological
quintessence) minimally coupled to gravity, in a flat background of initially
homogeneous matter. We find that when the energy density of the field in the
monopole core starts dominating the background density, the spacetime in the
core starts to accelerate its expansion in accordance to a \Lambda CDM model
with an effective inhomogeneous spherical dark energy density parameter
\Omega_\Lambda(r). The matter density profile is found to respond to the global
monopole profile via an anti-correlation (matter underdensity in the monopole
core). Away from the monopole core, the spacetime is effectively
Einstein-deSitter (\Omega_\Lambda(r_{out}) -> 0) while at the center
\Omega_\Lambda(r ~ 0) is maximum. We fit the numerically obtained expansion
rate at the monopole core to the Union2 data and show that the quality of fit
is almost identical to that of \Lambda CDM. Finally, we discuss potential
observational signatures of this class of inhomogeneous dark energy models.Comment: Accepted in Phys. Rev. D (to appear). Added observational bounds on
parameters. 10 pages (two column revtex), 6 figures. The Mathematica files
used to produce the figures of this study may be downloaded from
http://leandros.physics.uoi.gr/topquin
Polynomial Approximants for the Calculation of Polarization Profiles in the \ion{He}{1} 10830 \AA Multiplet
The \ion{He}{1} multiplet at 10830 \AA is formed in the incomplete
Paschen-Back regime for typical conditions found in solar and stellar
atmospheres. The positions and strengths of the various components that form
the Zeeman structure of this multiplet in the Paschen-Back regime are
approximated here by polynomials. The fitting errors are smaller than
m\AA in the component positions and in the relative
strengths. The approximant polynomials allow for a very fast implementation of
the incomplete Paschen-Back regime in numerical codes for the synthesis and
inversion of polarization profiles in this important multiplet.Comment: ApJ Supplements (in press
Signatures of Incomplete Paschen-Back Splitting in the Polarization Profiles of the He I 10830 multiplet
We investigate the formation of polarization profiles induced by a magnetic
field in the He I multiplet at 1083,0 nm . Our analysis considers the Zeeman
splitting in the incomplete Paschen-Back regime. The effects turn out to be
important and produce measurable signatures on the profiles, even for fields
significantly weaker than the level-crossing field (400 G). When compared
to profiles calculated with the usual linear Zeeman effect, the incomplete
Paschen-Back profiles exhibit the following conspicuous differences: a) a
non-Doppler blueshift of the Stokes V zero-crossing wavelength of the blue
component; b) area and peak asymmetries, even in the absence of velocity and
magnetic gradients; c) a 25% reduction in the amplitude of the red
component. These features do not vanish in the weak field limit. The spectral
signatures that we analyze in this paper may be found in previous observations
published in the literature.Comment: Accepted for publication in The Astrophysical Journa
- …