2,502 research outputs found
Elastic properties of hydrogenated graphene
There exist three conformers of hydrogenated graphene, referred to as chair-,
boat-, or washboard-graphane. These systems have a perfect two-dimensional
periodicity mapped onto the graphene scaffold, but they are characterized by a
orbital hybridization, have different crystal symmetry, and otherwise
behave upon loading. By first principles calculations we determine their
structural and phonon properties, as well as we establish their relative
stability. Through continuum elasticity we define a simulation protocol
addressed to measure by a computer experiment their linear and nonlinear
elastic moduli and we actually compute them by first principles. We argue that
all graphane conformers respond to any arbitrarily-oriented extention with a
much smaller lateral contraction than the one calculated for graphene.
Furthermore, we provide evidence that boat-graphane has a small and negative
Poisson ratio along the armchair and zigzag principal directions of the carbon
honeycomb lattice (axially auxetic elastic behavior). Moreover, we show that
chair-graphane admits both softening and hardening hyperelasticity, depending
on the direction of applied load.Comment: submitted on Phys.Rev.
Characterization of entangling properties of quantum measurement via two-mode quantum detector tomography using coherent state probes
Entangled measurement is a crucial tool in quantum technology. We propose a
new entanglement measure of multi-mode detection, which estimates the amount of
entanglement that can be created in a measurement. To illustrate the proposed
measure, we perform quantum tomography of a two-mode detector that is comprised
of two superconducting nanowire single photon detectors. Our method utilizes
coherent states as probe states, which can be easily prepared with accuracy.
Our work shows that a separable state such as a coherent state is enough to
characterize a potentially entangled detector. We investigate the entangling
capability of the detector in various settings. Our proposed measure verifies
that the detector makes an entangled measurement under certain conditions, and
reveals the nature of the entangling properties of the detector. Since the
precise characterization of a detector is essential for applications in quantum
information technology, the experimental reconstruction of detector properties
along with the proposed measure will be key features in future quantum
information processing.Comment: 18 pages, 6 figure
Genome sequence of an alphaherpesvirus from a beluga whale (Delphinapterus leucas)
Beluga whale alphaherpesvirus 1 was isolated from a blowhole swab taken from a juvenile beluga whale. The genome is 144,144 bp in size and contains 86 putative genes. The virus groups phylogenetically with members of the genus Varicellovirus in subfamily Alphaherpesvirinae and is the first alphaherpesvirus sequenced from a marine mammal
Nonlinear elasticity of monolayer graphene
By combining continuum elasticity theory and tight-binding atomistic
simulations, we work out the constitutive nonlinear stress-strain relation for
graphene stretching elasticity and we calculate all the corresponding nonlinear
elastic moduli. Present results represent a robust picture on elastic behavior
of one-atom thick carbon sheets and provide the proper interpretation of recent
experiments. In particular, we discuss the physical meaning of the effective
nonlinear elastic modulus there introduced and we predict its value in good
agreement with available data. Finally, a hyperelastic softening behavior is
observed and discussed, so determining the failure properties of graphene.Comment: 4 page
Quantum teleportation in space and frequency using entangled pairs of photons from a frequency comb
Using entangled pairs of photons from a frequency comb and wide-band frequency-resolved homodyne detection, we propose a sequential quantum teleportation protocol for continuous variables that teleports an unknown state in space and frequency. A subthreshold optical parametric oscillator (OPO) produces a comb of entangled pairs of photons separated by the free spectral range of the OPO cavity. Wide-band frequency-resolved homodyne detection enables direct access to the sum and difference of quadratures between different teeth in the comb. Such measurements are Einstein-Podolsky-Rosen nullifiers, and can be used as the basis for teleportation protocols. Our protocol for space-and-frequency teleportation effectively links arbitrary frequency channels for frequency-division multiplexing, which has applications in universal quantum computation and large-capacity quantum communication. © 2014 American Physical Society
Unconditional Continuous Variable Dense Coding
We investigate the conditions under which unconditional dense coding can be
achieved using continuous variable entanglement. We consider the effect of
entanglement impurity and detector efficiency and discuss experimental
verification. We conclude that the requirements for a strong demonstration are
not as stringent as previously thought and are within the reach of present
technology
Recommended from our members
A decision analytical framework for evaluating technical innovation and diffusion: The case of electronic ballasts for commercial buildings
The authors present a decision analytical framework for studying the decision to purchase new energy-efficient magnetic ballasts for commercial buildings as a special case study for understanding the decision environment that could either encourage or retard the penetration of new carbon-saving technologies. The framework is particularly germane to situations where uncertainty in the investment outcome prevails as a dominant dimension of the problem. It allows the policy analyst to consider policies that operate through other considerations than through the price alone. A key effect is how a policy will either truncate a probability distribution to remove the worst outcomes or cause the probability distribution to narrow. Such considerations appear important when studying information programs, vendor warranty, and other factors that condition the investment decision
Quantum noise limits to simultaneous quadrature amplitude and phase stabilization of solid-state lasers
A quantum mechanical model is formulated to describe the coupling between pump intensity noise and laser frequency noise in a solid-state laser. The model allows us to investigate the limiting effects of closed-loop stabilization schemes that utilize this coupling. Two schemes are considered: active control of the quadrature phase noise of the laser and active control of the amplitude noise of the laser. We show that the noise of the laser in the actively stabilized quadrature is ultimately limited by the vacuum noise introduced by the feedback beamsplitter in both schemes. In the case of active control of the quadrature phase noise, the noise is also limited by the intensity noise floor of the detection scheme. We also show that some sources of noise in the passively stabilized quadrature can be suppressed and that it is possible to achieve simultaneous quadrature amplitude and phase stabilization of a solid-state laser. However, the quantum mechanically driven noise in the passively stabilized quadrature cannot be suppressed. While this poses the ultimate limit to the noise in the passively stabilized quadrature, we show that it is experimentally feasible to observe squeezing directly generated by a solid-state laser using this technique
- …