108 research outputs found

    Three-dimensional coherence of the conscious body image

    Get PDF
    We experience our body as a coherent object in the three-dimensional (3-D) world. In contrast, the body is represented in somatosensory cortex as a fragmented collection of two-dimensional (2-D) maps. Recent results have suggested that some forms of higher-level body representations maintain this fragmentation, for example by showing different patterns of distortion for two surfaces of a single body part, such as the palmar and dorsal hand surfaces. This study investigated the 3-D coherence of the conscious body image of the hand by comparing perceptual biases of perceived hand shape on the dorsal and palmar surfaces. Participants made forced-choice judgments of whether observed hand images were thinner or wider than their own left or right hand, and perceptual distortions of the hand image were assessed by fitting psychometric functions. The results suggested that the hand is consciously represented as a fully coherent, 3-D object. Specifically: (1) similar overall levels of distortion were found on the palmar and dorsal hand surfaces, (2) comparable laterality effects were found on both surfaces (left hand represented as wider than right hand), and (3) the magnitude of distortions were strongly correlated across the two surfaces. Whereas other recent results have suggested that perceptual abilities such as position sense, tactile size perception, and tactile localisation may rely on fragmented, 2-D representations of individual skin surfaces, the present results suggest that, in striking contrast, the conscious body image represents the body (or, at least the hand) as a coherent, 3-D object

    The weight of representing the body: addressing the potentially indefinite number of body representations in healthy individuals

    Get PDF
    There is little consensus about the characteristics and number of body representations in the brain. In the present paper, we examine the main problems that are encountered when trying to dissociate multiple body representations in healthy individuals with the use of bodily illusions. Traditionally, task-dependent bodily illusion effects have been taken as evidence for dissociable underlying body representations. Although this reasoning holds well when the dissociation is made between different types of tasks that are closely linked to different body representations, it becomes problematic when found within the same response task (i.e., within the same type of representation). Hence, this experimental approach to investigating body representations runs the risk of identifying as many different body representations as there are significantly different experimental outputs. Here, we discuss and illustrate a different approach to this pluralism by shifting the focus towards investigating task-dependency of illusion outputs in combination with the type of multisensory input. Finally, we present two examples of behavioural bodily illusion experiments and apply Bayesian model selection to illustrate how this different approach of dissociating and classifying multiple body representations can be applied

    The role of impulsivity in the aetiology of drug dependence: reward sensitivity versus automaticity

    Get PDF
    Journal ArticleResearch Support, Non-U.S. Gov'tCopyright © The Author(s) 2011.RATIONALE: Impulsivity has long been known as a risk factor for drug dependence, but the mechanisms underpinning this association are unclear. Impulsivity may confer hypersensitivity to drug reinforcement which establishes higher rates of instrumental drug-seeking and drug-taking behaviour, or may confer a propensity for automatic (non-intentional) control over drug-seeking/taking and thus intransigence to clinical intervention. METHOD: The current study sought to distinguish these two accounts by measuring Barratt Impulsivity and craving to smoke in 100 smokers prior to their completion of an instrumental concurrent choice task for tobacco (to measure the rate of drug-seeking) and an ad libitum smoking test (to measure the rate of drug-taking-number of puffs consumed). RESULTS: The results showed that impulsivity was not associated with higher rates of drug-seeking/taking, but individual differences in smoking uptake and craving were. Rather, nonplanning impulsivity moderated (decreased) the relationship between craving and drug-taking, but not drug-seeking. CONCLUSIONS: These data suggest that whereas the uptake of drug use is mediated by hypervaluation of the drug as an instrumental goal, the orthogonal trait nonplanning impulsivity confers a propensity for automatic control over well-practiced drug-taking behaviour.MR

    The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective

    Full text link

    Semantic Feature Training in Combination with Transcranial Direct Current Stimulation (tDCS) for Progressive Anomia

    No full text
    We examined the effectiveness of a 2-week regimen of a semantic feature training in combination with transcranial direct current stimulation (tDCS) for progressive naming impairment associated with primary progressive aphasia (N = 4) or early onset Alzheimer’s Disease (N = 1). Patients received a 2-week regimen (10 sessions) of anodal tDCS delivered over the left temporoparietal cortex while completing a language therapy that consisted of repeated naming and semantic feature generation. Therapy targets consisted of familiar people, household items, clothes, foods, places, hygiene implements, and activities. Untrained items from each semantic category provided item level controls. We analyzed naming accuracies at multiple timepoints (i.e., pre-, post-, 6-month follow-up) via a mixed effects logistic regression and individual differences in treatment responsiveness using a series of non-parametric McNemar tests. Patients showed advantages for naming trained over untrained items. These gains were evident immediately post tDCS. Trained items also showed a shallower rate of decline over 6-months relative to untrained items that showed continued progressive decline. Patients tolerated stimulation well, and sustained improvements in naming accuracy suggest that the current intervention approach is viable. Future implementation of a sham control condition will be crucial toward ascertaining whether neurostimulation and behavioral treatment act synergistically or alternatively whether treatment gains are exclusively attributable to either tDCS or the behavioral intervention

    Carving the Clock at Its Component Joints: Neural Bases for Interval Timing

    No full text
    Models of time perception often describe an “internal clock” that involves at least two components: an accumulator and a comparator. We used functional magnetic resonance imaging to test the hypothesis that distinct distributed neural networks mediate these components of time perception. Subjects performed a temporal discrimination task that began with a visual stimulus (S1) that varied parametrically in duration of presentation. A varying interstimulus interval was followed by a second visual stimulus (S2). After the S2 offset, the subject indicated whether S2 was longer or shorter than S1. We reasoned that neural activity that correlated with S1 duration would represent accumulator networks. We also reasoned that neural activity that correlated with the difficulty of comparisons for each paired-judgment would represent comparator networks. Using anatomically defined regions of interest, we found duration of S1 significantly correlated with left inferior frontal, supplementary motor area (SMA) and superior temporal regions. Furthermore, task difficulty correlated with activity within bilateral inferior frontal gyri. Therefore accumulator and comparator functioning of the internal clock are mediated by distinct as well as partially overlapping neural regions
    corecore