3,969 research outputs found
Quantum Cryptography with Orthogonal States?
This is a Comment on Phys Rev Lett 75 (1995) 1239, by Goldenberg and VaidmanComment: 3 pages, LaTeX, 1 figure on separate page Final version in Phys Rev
Lett 77 (1996) 326
Testing quantum superpositions of the gravitational field with Bose-Einstein condensates
We consider the gravity field of a Bose-Einstein condensate in a quantum
superposition. The gravity field then is also in a quantum superposition which
is in principle observable. Hence we have ``quantum gravity'' far away from the
so-called Planck scale
Elliptic Rydberg states as direction indicators
The orientation in space of a Cartesian coordinate system can be indicated by
the two vectorial constants of motion of a classical Keplerian orbit: the
angular momentum and the Laplace-Runge-Lenz vector. In quantum mechanics, the
states of a hydrogen atom that mimic classical elliptic orbits are the coherent
states of the SO(4) rotation group.It is known how to produce these states
experimentally. They have minimal dispersions of the two conserved vectors and
can be used as direction indicators. We compare the fidelity of this
transmission method with that of the idealized optimal method
1991 DA: An asteroid in a bizarre orbit
Asteroidal object 1991 DA has an orbit of high inclination, crossing the planets from Mars to Uranus. This is unique for an asteroid, but not unusual for a comet of the Halley-type: it therefore seems likely that 1991 DA is an extinct or dormant comet. Previous CCD imaging has shown no indication of a coma; spectroscopic observations of 1991 DA which lack any evidence of strong comet-like emissions are reported. Numerical integrations of the orbit of this object were performed which show that is has been remarkably stable for the past approximately 20,000 yr, but chaotic before that. This may allow a new estimate to be made of the physical lifetimes of comets
Recommended from our members
Could a kangaroo win the Tour de France? The effect of relative crank angle on metabolic efficiency in cycling.
The rapid evolution of bicycles in the 1800s increased the speed of human powered transportation ten-fold compared to walking and decreased the metabolic power required by 300%. However, the metabolic gross efficiency has hardly changed. I tested the null hypothesis that the metabolic costs of cycling at different relative crank angles would not differ. I tested ten healthy, male, recreational bicycle riders (27.8 ± 8.2 yr, mean ± SD, mass 69.8 ± 3.2 kg) on a custom, pan-loaded cycle ergometer equipped with a standard Monark flywheel. The ergometer had a Shimano Octalink® bottom bracket, which allowed us to set the relative crank arm angles at 45° increments. Each subject completed six, 5-minute trials. The first and last trials were at a relative crank angle of 180°. We randomized the order of the middle trials (135°, 90°, 45°, and 0°). We averaged V̇O2, V̇CO2, and respiratory exchange ratio (RER) for the last 2 minutes of each 5-minute trial. From the V̇O2 and V̇CO2 measurements, we calculated metabolic power. I reject my null hypothesis; crank angles other than 180° required greater metabolic power. As relative crank angle decreased from 180°, metabolic power monotonically increased by 1.6% at 135° (p\u3c0.002) to only 8.2% greater when the relative crank angle was 0° (p\u3c0.001). Despite radically changing the relative crank angle, metabolic efficiency decreased by only ~8%. Thus, I conclude that attempts to enhance efficiency via pedaling technique or technology are likely futile
Covariant quantum measurements may not be optimal
Quantum particles, such as spins, can be used for communicating spatial
directions to observers who share no common coordinate frame. We show that if
the emitter's signals are the orbit of a group, then the optimal detection
method may not be a covariant measurement (contrary to widespread belief). It
may be advantageous for the receiver to use a different group and an indirect
estimation method: first, an ordinary measurement supplies redundant numerical
parameters; the latter are then used for a nonlinear optimal identification of
the signal.Comment: minor corrections, to appear in J. Mod. Opt. (proc. of Gdansk conf.
Division of labour and risk taking in the dinosaur ant, Dinoponera quadriceps
The success of social insects can be largely attributed to division of labour. In contrast to most social insects, many species with simple societies contain workers which are capable of sexual reproduction. Headed by one or a few reproductive individuals, subordinate workers form a dominance hierarchy, queuing to attain the reproductive role. In these species task allocation may be influenced by individual choice based on future reproductive prospects. Individuals with a better chance of inheriting the colony may be less likely to take risks and high-ranking workers that spend a greater amount of time in proximity to the brood may be able to increase the ability to police egg-laying by cheating subordinates. We investigated division of labour and risk taking in relation to dominance rank in the queenless ponerine ant, Dinoponera quadriceps, a species with relatively simple societies. Using behavioural observations, we show that high-ranking workers spend more time performing egg care, less time foraging and are less likely to defend the nest against attack. High-rankers also spent a greater amount of time guarding and inspecting eggs, behaviours which are likely to improve detection of egg laying by cheating subordinates. We also show that high-ranking workers spend a greater amount of time idle, which may help increase lifespan by reducing energy expenditure. Our results suggest that both risk-taking and egg-care behaviours are related to future reproductive prospects in D. quadriceps. This highlights a mechanism by which effective division of labour could have been achieved during the early stages of eusocial evolution
Lorentz transformations of open systems
We consider open dynamical systems, subject to external interventions by
agents that are not completely described by the theory (classical or quantal).
These interventions are localized in regions that are relatively spacelike.
Under these circumstances, no relativistic transformation law exists that
relates the descriptions of the physical system by observers in relative
motion. Still, physical laws are the same in all Lorentz frames.Comment: Final version submitted to J. Mod. Opt. (Proc. of Gdansk conference
- …