3,137 research outputs found
Controlling the pair momentum of the FFLO state in a 3D Fermi gas through a 1D periodic potential
The question whether a spin-imbalanced Fermi gas can accommodate the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state has been the subject of intense
study. This state, in which Cooper pairs obtain a nonzero momentum, has
hitherto eluded experimental observation. Recently, we demonstrated that the
FFLO state can be stabilized in a 3D Fermi gas, by adding a 1D periodic
potential. Until now it was assumed that the FFLO wave vector always lies
parallel to this periodic potential (FFLO-P). In this contribution we show
that, surprisingly, the FFLO wave vector can also lie skewed with respect to
the potential (FFLO-S). Starting from the partition sum, the saddle-point free
energy of the system is derived within the path-integral formalism. Minimizing
this free energy allows us to study the different competing ground states of
the system. To qualitatively understand the underlying pairing mechanism, we
visualize the Fermi surfaces of the spin up and spin down particles. From this
visualization, we find that tilting the FFLO wave vector with respect to the
direction of the periodic potential, can result in a larger overlap between the
pairing bands of both spin species. This skewed FFLO state can provide an
additional experimental signature for observing FFLO superfluidity in a 3D
Fermi gas.Comment: 19 pages, 3 figure
Design and experimental validation of a compact collimated Knudsen source
In this paper we discuss the design and performance of a collimated Knudsen
source which has the benefit of a simple design over recirculating sources.
Measurements of the flux, transverse velocity distribution and brightness at
different temperatures were conducted to evaluate the performance. The scaling
of the flux and brightness with the source temperature follow the theoretical
predictions. The transverse velocity distribution in the transparent operation
regime also agrees with the simulated data. The source was found able to
produce a flux of s at a temperature of 433 K. Furthermore the
transverse reduced brightness of an ion beam with equal properties as the
atomic beam reads A/(m sr eV) which is sufficient for
our goal: the creation of an ultra-cold ion beam by ionization of a
laser-cooled and compressed atomic rubidium beam
Cavity-enhanced photoionization of an ultracold rubidium beam for application in focused ion beams
A two-step photoionization strategy of an ultracold rubidium beam for
application in a focused ion beam instrument is analyzed and implemented. In
this strategy the atomic beam is partly selected with an aperture after which
the transmitted atoms are ionized in the overlap of a tightly cylindrically
focused excitation laser beam and an ionization laser beam whose power is
enhanced in a build-up cavity. The advantage of this strategy, as compared to
without the use of a build-up cavity, is that higher ionization degrees can be
reached at higher currents. Optical Bloch equations including the
photoionization process are used to calculate what ionization degree and
ionization position distribution can be reached. Furthermore, the ionization
strategy is tested on an ultracold beam of Rb atoms. The beam current is
measured as a function of the excitation and ionization laser beam intensity
and the selection aperture size. Although details are different, the global
trends of the measurements agree well with the calculation. With a selection
aperture diameter of 52 m, a current of pA is
measured, which according to calculations is 63% of the current equivalent of
the transmitted atomic flux. Taking into account the ionization degree the ion
beam peak reduced brightness is estimated at A/(msreV).Comment: 13 pages, 9 figure
Longitudinal static optical properties of hydrogen chains: finite field extrapolations of matrix product state calculations
We have implemented the sweep algorithm for the variational optimization of
SU(2) x U(1) (spin and particle number) invariant matrix product states (MPS)
for general spin and particle number invariant fermionic Hamiltonians. This
class includes non-relativistic quantum chemical systems within the
Born-Oppenheimer approximation. High-accuracy ab-initio finite field results of
the longitudinal static polarizabilities and second hyperpolarizabilities of
one-dimensional hydrogen chains are presented. This allows to assess the
performance of other quantum chemical methods. For small basis sets, MPS
calculations in the saturation regime of the optical response properties can be
performed. These results are extrapolated to the thermodynamic limit.Comment: Submitted to J. Chem. Phy
Energy-weighted density matrix embedding of open correlated chemical fragments
We present a multi-scale approach to efficiently embed an ab initio
correlated chemical fragment described by its energy-weighted density matrices,
and entangled with a wider mean-field many-electron system. This approach,
first presented in Phys. Rev. B, 98, 235132 (2018), is here extended to account
for realistic long-range interactions and broken symmetry states. The scheme
allows for a systematically improvable description in the range of correlated
fluctuations out of the fragment into the system, via a self-consistent
optimization of a coupled auxiliary mean-field system. It is discussed that the
method has rigorous limits equivalent to existing quantum embedding approaches
of both dynamical mean-field theory, as well as density matrix embedding
theory, to which this method is compared, and the importance of these
correlated fluctuations is demonstrated. We derive a self-consistent local
energy functional within the scheme, and demonstrate the approach for Hydrogen
rings, where quantitative accuracy is achieved despite only a single atom being
explicitly treated.Comment: 14 pages, 8 figure
18S is an appropriate housekeeping gene for in vitro hypoxia experiments
Contains fulltext :
89673.pdf (publisher's version ) (Closed access
Direct magneto-optical compression of an effusive atomic beam for high-resolution focused ion beam application
An atomic rubidium beam formed in a 70 mm long two-dimensional
magneto-optical trap (2D MOT), directly loaded from a collimated Knudsen
source, is analyzed using laser-induced fluorescence. The longitudinal velocity
distribution, the transverse temperature and the flux of the atomic beam are
reported. The equivalent transverse reduced brightness of an ion beam with
similar properties as the atomic beam is calculated because the beam is
developed to be photoionized and applied in a focused ion beam. In a single
two-dimensional magneto-optical trapping step an equivalent transverse reduced
brightness of A/(m sr eV) was
achieved with a beam flux equivalent to nA. The
temperature of the beam is further reduced with an optical molasses after the
2D MOT. This increased the equivalent brightness to A/(m sr eV). For currents below 10 pA, for which disorder-induced
heating can be suppressed, this number is also a good estimate of the ion beam
brightness that can be expected. Such an ion beam brightness would be a six
times improvement over the liquid metal ion source and could improve the
resolution in focused ion beam nanofabrication.Comment: 10 pages, 8 figures, 1 tabl
Altimetry, gravimetry, GPS and viscoelastic modeling data for the joint inversion for glacial isostatic adjustment in Antarctica (ESA STSE Project REGINA)
The poorly known correction for the ongoing deformation of the solid Earth caused by glacial isostatic adjustment (GIA) is a major uncertainty in determining the mass balance of the Antarctic ice sheet from measurements of satellite gravimetry and to a lesser extent satellite altimetry. In the past decade, much progress has been made in consistently modeling ice sheet and solid Earth interactions; however, forward-modeling solutions of GIA in Antarctica remain uncertain due to the sparsity of constraints on the ice sheet evolution, as well as the Earth's rheological properties. An alternative approach towards estimating GIA is the joint inversion of multiple satellite data – namely, satellite gravimetry, satellite altimetry and GPS, which reflect, with different sensitivities, trends in recent glacial changes and GIA. Crucial to the success of this approach is the accuracy of the space-geodetic data sets. Here, we present reprocessed rates of surface-ice elevation change (Envisat/Ice, Cloud,and land Elevation Satellite, ICESat; 2003–2009), gravity field change (Gravity Recovery and Climate Experiment, GRACE; 2003–2009) and bedrock uplift (GPS; 1995–2013). The data analysis is complemented by the forward modeling of viscoelastic response functions to disc load forcing, allowing us to relate GIA-induced surface displacements with gravity changes for different rheological parameters of the solid Earth. The data and modeling results presented here are available in the PANGAEA database (https://doi.org/10.1594/PANGAEA.875745). The data sets are the input streams for the joint inversion estimate of present-day ice-mass change and GIA, focusing on Antarctica. However, the methods, code and data provided in this paper can be used to solve other problems, such as volume balances of the Antarctic ice sheet, or can be applied to other geographical regions in the case of the viscoelastic response functions. This paper presents the first of two contributions summarizing the work carried out within a European Space Agency funded study: Regional glacial isostatic adjustment and CryoSat elevation rate corrections in Antarctica (REGINA)
- …