1,183 research outputs found

    Gas-cooling by dust during dynamical fragmentation

    Get PDF
    We suggest that the abrupt switch, from hierarchical clustering on scales larger than 0.04 pc, to binary (and occasionally higher multiple) systems on smaller scales, which Larson has deduced from his analysis of the grouping of pre-Main-Sequence stars in Taurus, arises because pre-protostellar gas becomes thermally coupled to dust at sufficiently high densities. The resulting change from gas-cooling by molecular lines at low densities to gas-cooling by dust at high densities enables the matter to radiate much more efficiently, and hence to undergo dynamical fragmentation. We derive the domain where gas-cooling by dust facilitates dynamical fragmentation. Low-mass (i.e. solar mass) clumps - those supported mainly by thermal pressure - can probably access this domain spontaneously, albeit rather quasistatically, provided they exist in a region where external perturbations are few and far between. More massive clumps probably require an impulsive external perturbation, for instance a supersonic collision with another clump, in order for the gas to reach sufficiently high density to couple thermally to the dust. Impulsive external perturbations should promote fragmentation, by generating highly non-line ar substructures which can then be amplified by gravity during the subsequent collapse.Comment: 9 pages, 4 figures, accepted by MNRA

    Dynamical Expansion of Ionization and Dissociation Front around a Massive Star. II. On the Generality of Triggered Star Formation

    Full text link
    We analyze the dynamical expansion of the HII region, photodissociation region, and the swept-up shell, solving the UV- and FUV-radiative transfer, the thermal and chemical processes in the time-dependent hydrodynamics code. Following our previous paper, we investigate the time evolutions with various ambient number densities and central stars. Our calculations show that basic evolution is qualitatively similar among our models with different parameters. The molecular gas is finally accumulated in the shell, and the gravitational fragmentation of the shell is generally expected. The quantitative differences among models are well understood with analytic scaling relations. The detailed physical and chemical structure of the shell is mainly determined by the incident FUV flux and the column density of the shell, which also follow the scaling relations. The time of shell-fragmentation, and the mass of the gathered molecular gas are sensitive tothe ambient number density. In the case of the lower number density, the shell-fragmentation occurs over a longer timescale, and the accumulated molecular gas is more massive. The variations with different central stars are more moderate. The time of the shell-fragmentation differs by a factor of several with the various stars of M_* = 12-101 M_sun. According to our numerical results, we conclude that the expanding HII region should be an efficient trigger for star formation in molecular clouds if the mass of the ambient molecular material is large enough.Comment: 49 pages, including 17 figures ; Accepted for publication in Ap

    Dynamical Expansion of Ionization and Dissociation Front around a Massive Star. I. A Mode of Triggered Star Formation

    Full text link
    We analyze the dynamical expansion of the HII region and outer photodissociation region (PDR) around a massive star by solving the UV and FUV radiation transfer and the thermal and chemical processes in a time-dependent hydrodynamics code. We focus on the physical structure of the shell swept up by the shock front (SF) preceding the ionization front (IF). After the IF reaches the initial Stromgren radius, the SF emerges in front of the IF and the geometrically thin shell bounded with the IF and the SF is formed. The gas density inside the shell is about 10-100 times as high as the ambient gas density. Initially the dissociation fronts expands faster than IF and the PDR is formed outside the HII region. Thereafter the IF and SF gradually overtakes the proceeding dissociation fronts (DFs), and eventually DFs are taken in the shell. The chemical composition within the shell is initially atomic, but hydrogen and carbon monoxide molecules are gradually formed. This is partly because the IF and SF overtake DFs and SF enters the molecular region, and partly because the reformation timescales of the molecules become shorter than the dynamical timescale. The gas shell becomes dominated by the molecular gas by the time of gravitational fragmentation, which agrees with some recent observations. A simple estimation of star formation rate in the shell can provide a significant star formation rate in our galaxy.Comment: 5 pages, 3 figures ; Accepted for publication in ApJ, scheduled for the April 2005, v623 2 issu

    Book Reviews

    Get PDF

    Genetic algorithm for embodied energy optimisation of steel-concrete composite beams

    Get PDF
    The optimisation of structural performance is acknowledged as a means of obtaining sustainable structural designs. A minimisation of embodied energy of construction materials is a key component in the delivery of sustainable future designs. This study attempts to understand the relationship between embodied energy and structural form of composite floor plates for tall buildings, and how this form can be optimised to minimise embodied energy. As a search method based upon the principles of genetics and natural selection, genetic algorithms (GA) have previously been used as novel means of optimising composite beams and composite frames for cost and weight objective functions. Parametric design models have also been presented as optimisation tools to optimise steel floor plates for both cost and embodied carbon. In this study, a Matlab algorithm is presented incorporating MathWorks global optimisation toolbox GA and utilising Eurocode 4 design processes to optimise a composite beam for five separate objective functions: maximise span length; minimise beam cross-section; minimise slab depth; minimise weight; minimise deflected shape for each of the objective functions. Candidate designs are to be assessed for embodied energy to determine individual relationships. This study shows that it is possible to reduce the embodied energy of steel-concrete composite beams by genetic algorithm optimisation whilst remaining compliant to given design codes

    Numerical simulations of protostellar encounters I. Star-disc encounters

    Get PDF
    It appears that most stars are born in clusters, and that at birth most stars have circumstellar discs which are comparable in size to the separations between the stars. Interactions between neighbouring stars and discs are therefore likely to play a key role in determining disc lifetimes, stellar masses, and the separations and eccentricities of binary orbits. Such interactions may also cause fragmentation of the discs, thereby triggering the formation of additional stars. We have carried out a series of simulations of disc-star interactions using an SPH code which treats self-gravity, hydrodynamic and viscous forces. We find that interactions between discs and stars provide a mechanism for removing energy from, or adding energy to, the orbits of the stars, and for truncating the discs. However, capture during such encounters is unlikely to be an important binary formation mechanism. A more significant consequence of such encounters is that they can trigger fragmentation of the disc, via tidally and compressionally induced gravitational instabilities, leading to the formation of additional stars. When the disc-spins and stellar orbits are randomly oriented, encounters lead to the formation of new companions to the original star in 20% of encounters. If most encounters are prograde and coplanar, as suggested by simulations of dynamically-triggered star formation, then new companions are formed in approximately 50% of encounters.Comment: 17 pages, submitted to MNRAS; low resolution figures onl

    Numerical simulations of protostellar encounters III. Non-coplanar disc-disc encounters

    Get PDF
    It is expected that an average protostar will undergo at least one impulsive interaction with a neighbouring protostar whilst a large fraction of its mass is still in a massive, extended disc. If protostars are formed individually within a cluster before falling together and interacting, there should be no preferred orientation for such interactions. As star formation within clusters is believed to be coeval, it is probable that during interactions, both protostars possess massive, extended discs. We have used an SPH code to carry out a series of simulations of non-colpanar disc-disc interactions. We find that non-coplanar interactions trigger gravitational instabilities in the discs, which may then fragment to form new companions to the existing stars. (This is different from coplanar interactions, in which most of the new companion stars form after material in the discs has been swept up into a shock layer, and this then fragments.) The original stars may also capture each other, leading to the formation of a small-N cluster. If every star undergoes a randomly oriented disc-disc interaction, then the outcome will be the birth of many new stars. Approximately two-thirds of the stars will end up in multiple systems.Comment: 12 pages, submitted to MNRAS; low resolution figures onl
    • 

    corecore