314 research outputs found

    Neutron diffraction study of lunar materials Final report

    Get PDF
    Apollo 12 lunar samples studied with neutron diffraction at room and cryogenic temperature

    LDA+DMFT computation of the electronic spectrum of NiO

    Full text link
    The electronic spectrum, energy gap and local magnetic moment of paramagnetic NiO are computed by using the local density approximation plus dynamical mean-field theory (LDA+DMFT). To this end the noninteracting Hamiltonian obtained within the local density approximation (LDA) is expressed in Wannier functions basis, with only the five anti-bonding bands with mainly Ni 3d character taken into account. Complementing it by local Coulomb interactions one arrives at a material-specific many-body Hamiltonian which is solved by DMFT together with quantum Monte-Carlo (QMC) simulations. The large insulating gap in NiO is found to be a result of the strong electronic correlations in the paramagnetic state. In the vicinity of the gap region, the shape of the electronic spectrum calculated in this way is in good agreement with the experimental x-ray-photoemission and bremsstrahlung-isochromat-spectroscopy results of Sawatzky and Allen. The value of the local magnetic moment computed in the paramagnetic phase (PM) agrees well with that measured in the antiferromagnetic (AFM) phase. Our results for the electronic spectrum and the local magnetic moment in the PM phase are in accordance with the experimental finding that AFM long-range order has no significant influence on the electronic structure of NiO.Comment: 15 pages, 6 figures, 1 table; published versio

    Universal deformation rings for the symmetric group S_4

    Full text link
    Let k be an algebraically closed field of characteristic 2, and let W be the ring of infinite Witt vectors over k. Let S_4 denote the symmetric group on 4 letters. We determine the universal deformation ring R(S_4,V) for every kS_4-module V which has stable endomorphism ring k and show that R(S_4,V) is isomorphic to either k, or W[t]/(t^2,2t), or the group ring W[Z/2]. This gives a positive answer in this case to a question raised by the first author and Chinburg whether the universal deformation ring of a representation of a finite group with stable endomorphism ring k is always isomorphic to a subquotient ring of the group ring over W of a defect group of the modular block associated to the representation.Comment: 12 pages, 2 figure

    ICP curve morphology and intracranial flow-volume changes: a simultaneous ICP and cine phase contrast MRI study in humans

    Get PDF
    Background: The intracranial pressure (ICP) curve with its different peaks has been extensively studied, but the exact physiological mechanisms behind its morphology are still not fully understood. Both intracranial volume change (ΔICV) and transmission of the arterial blood pressure have been proposed to shape the ICP curve. This study tested the hypothesis that the ICP curve correlates to intracranial volume changes. Methods: Cine phase contrast magnetic resonance imaging (MRI) examinations were performed in neuro-intensive care patients with simultaneous ICP monitoring. The MRI was set to examine cerebral arterial inflow and venous cerebral outflow as well as flow of cerebrospinal fluid over the foramen magnum. The difference in total flow into and out from the cranial cavity (Flowtot) over time provides the ΔICV. The ICP curve was compared to the Flowtot and the ΔICV. Correlations were calculated through linear and logarithmic regression. Student’s t test was used to test the null hypothesis between paired samples. Results: Excluding the initial ICP wave, P1, the mean R2 for the correlation between the ΔICV and the ICP was 0.75 for the exponential expression, which had a higher correlation than the linear (p = 0.005). The first ICP peaks correlated to the initial peaks of Flowtot with a mean R2 = 0.88. Conclusion: The first part, or the P1, of the ICP curve seems to be created by the first rapid net inflow seen in Flowtot while the rest of the ICP curve seem to correlate to the ΔICV

    Giant Anharmonic Phonon Scattering in PbTe

    Full text link
    Understanding the microscopic processes affecting the bulk thermal conductivity is crucial to develop more efficient thermoelectric materials. PbTe is currently one of the leading thermoelectric materials, largely thanks to its low thermal conductivity. However, the origin of this low thermal conductivity in a simple rocksalt structure has so far been elusive. Using a combination of inelastic neutron scattering measurements and first-principles computations of the phonons, we identify a strong anharmonic coupling between the ferroelectric transverse optic (TO) mode and the longitudinal acoustic (LA) modes in PbTe. This interaction extends over a large portion of reciprocal space, and directly affects the heat-carrying LA phonons. The LA-TO anharmonic coupling is likely to play a central role in explaining the low thermal conductivity of PbTe. The present results provide a microscopic picture of why many good thermoelectric materials are found near a lattice instability of the ferroelectric type

    Implementation of the Projector Augmented Wave LDA+U Method: Application to the Electronic Structure of NiO

    Full text link
    The so-called local density approximation plus the multi-orbital mean-field Hubbard model (LDA+U) has been implemented within the all-electron projector augmented-wave method (PAW), and then used to compute the insulating antiferromagnetic ground state of NiO and its optical properties. The electronic and optical properties have been investigated as a function of the Coulomb repulsion parameter U. We find that the value obtained from constrained LDA (U=8 eV) is not the best possible choice, whereas an intermediate value (U=5 eV) reproduces the experimental magnetic moment and optical properties satisfactorily. At intermediate U, the nature of the band gap is a mixture of charge transfer and Mott-Hubbard type, and becomes almost purely of the charge-transfer type at higher values of U. This is due to the enhancement of the oxygen 2p states near the top of the valence states with increasing U value.Comment: 23 pages, 6 figures, submitted to Phys. Rev.

    Property (T) and rigidity for actions on Banach spaces

    Full text link
    We study property (T) and the fixed point property for actions on LpL^p and other Banach spaces. We show that property (T) holds when L2L^2 is replaced by LpL^p (and even a subspace/quotient of LpL^p), and that in fact it is independent of 1p<1\leq p<\infty. We show that the fixed point property for LpL^p follows from property (T) when 1. For simple Lie groups and their lattices, we prove that the fixed point property for LpL^p holds for any 1<p<1< p<\infty if and only if the rank is at least two. Finally, we obtain a superrigidity result for actions of irreducible lattices in products of general groups on superreflexive Banach spaces.Comment: Many minor improvement
    corecore