27,158 research outputs found
Electrophoresis device
A device for separating cellular particles of a sample substance into fractionated streams of different cellular species includes a casing having a distribution chamber, a separation chamber, and a collection chamber. The electrode chambers are separated from the separation chamber interior by means of passages such that flow variations and membrane variations around the slotted portion of the electrode chamber do not enduce flow perturbations into the laminar buffer curtain flowing in the separation chamber. The cellular particles of the sample are separated under the influence of the electrical field and the separation chamber into streams of different cellular species. The streams of separated cells enter a partition array in the collection chamber where they are fractionated and collected
Moving wall, continuous flow electronphoresis apparatus
This invention relates generally to electrophoresis devices and more particularly to a moving wall, continuous flow device in which an electrophoresis chamber is angularly positionable with respect to the direction of moving belt walls. A frame with an electrophoresis chamber is rotatably supported between two synchronously driven belt walls. This allows the chamber to be angularly positionable with respect to the direction of belt travel, which compensates for electroosmotic flow within the electrophoresis chamber. Injection of a buffer solution via an opening and a homogenous sample stream via another opening is performed at the end of a chamber, and collection of buffer and the fractionated species particles is done by a conventional collection array at an opposite end of the chamber. Belts are driven at a rate which exactly matches the flow of buffer and sample through the chamber, which entrains the buffer to behave as a rigid electrophoretic medium, eliminating flow distortions (Poiseuille effect). Additionally, belt material for each belt is stored at one end of the device and is taken up by drive wheels at an opposite end. The novelty of this invention particularly lies in the electrophoresis chamber being angularly positionable between two moving belt walls in order to compensate for electroosmotic flow. Additionally, new belt material is continuously exposed within the chamber, minimizing flow distortion due to contamination of the belt material by the sample
Method of crystallization
A method is described for refining or growing bulk single crystals in an environment substantially free of gravity. The base material is suspended, positioned, and shaped as a containerless melt by wetting forces. Because no crucible is required, high temperature refractory materials can be processed
Preparative electrophoresis for space
A premise of continuous flow electrophoresis is that removal of buoyance-induced thermal convection caused by axial and lateral temperature gradients results in ideal performance of these instruments in space. Although these gravity dependent phenomena disturb the rectilinear flow in the separation chamber when high voltage gradients or thick chamber are used, distortion of the injected sample stream due to electrodynamic effects cause major broadening of the separated bands. The electrophoresis separation process is simple, however flow local to the sample filament produced by the applied electric field were not considered. These electrohydrodynamic flows distort the sample stream and limit the separation. Also, electroosmosis and viscous flow combine to further distort the process. A moving wall concept is being proposed for space which will eliminate and control the disturbances. The moving wall entrains the fluid to move as a rigid body and produces a constant residence time for all samples distributed across the chamber thickness. The moving wall electrophoresis chamber can only be operated in space because there is no viscous flow in the chamber to stabilize against thermal convection
Hollow fiber clinostat for simulating microgravity in cell culture
A clinostat for simulating microgravity on cell systems carried in a fiber fixedly mounted in a rotatable culture vessel is disclosed. The clinostat is rotated horizontally along its longitudinal axis to simulate microgravity or vertically as a control response. Cells are injected into the fiber and the ends of the fiber are sealed and secured to spaced end pieces of a fiber holder assembly which consists of the end pieces, a hollow fiber, a culture vessel, and a tension spring with three alignment pins. The tension spring is positioned around the culture vessel with its ends abutting the end pieces for alignment of the spring. After the fiber is secured, the spring is decompressed to maintain tension on the fiber while it is being rotated. This assures that the fiber remains aligned along the axis of rotation. The fiber assembly is placed in the culture vessel and culture medium is added. The culture vessel is then inserted into the rotatable portion of the clinostat and subjected to rotate at selected rpms. The internal diameter of the hollow fiber determines the distance the cells are from the axis of rotation
Flow and thermal effects in continuous flow electrophoresis
In continuous flow electrophoresis the axial flow structure changes from a fully developed rectilinear form to one characterized by meandering as power levels are increased. The origin of this meandering is postulated to lie in a hydrodynamic instability driven by axial (and possibly lateral) temperature gradients. Experiments done at MSFC show agreement with the theory
Continuous flow electrophoresis system experiments on shuttle flights STS-6 and STS-7
The development of a space continuous flow electrophoresis system (CFES) is discussed. The objectives of the experiment were: (1) to use a model sample material at a high concentration to evaluate the continuous flow electrophoresis process in the McDonnell Douglass CFES instrument and compare its separation resolution and sample throughput with related devices on Earth, and (2) to expand the basic knowledge of the limitations imposed by fluid flows and particle concentration effects on the electrophoresis process by careful design and evaluation of the space experiment. Hemoglobin and polysaccharide were selected as samples of concentration effects. The results from space show a large band spread of the high concentration of the single species of hemoglobin that was principally due to the mismatch of electrical conductivity between the sample and buffer
Nanoscale alpha-structural domains in the phonon-glass thermoelectric material beta-Zn4Sb3
A study of the local atomic structure of the promising thermoelectric material beta-Zn4Sb3, using atomic pair distribution function (PDF) analysis of x-ray- and neutron-diffraction data, suggests that the material is nanostructured. The local structure of the beta phase closely resembles that of the low-temperature alpha phase. The alpha structure contains ordered zinc interstitial atoms which are not long range ordered in the beta phase. A rough estimate of the domain size from a visual inspection of the PDF is <~10 nm. It is probable that the nanoscale domains found in this study play an important role in the exceptionally low thermal conductivity of beta-Zn4Sb3
Massless Scalar Field Propagator in a Quantized Space-Time
We consider in detail the analytic behaviour of the non-interacting massless
scalar field two-point function in H.S. Snyder's discretized non-commuting
spacetime. The propagator we find is purely real on the Euclidean side of the
complex plane and goes like as from either the
Euclidean or Minkowski side. The real part of the propagator goes smoothly to
zero as increases to the discretization scale and remains zero
for . This behaviour is consistent with the termination of
single-particle propagation on the ultraviolet side of the discretization
scale. The imaginary part of the propagator, consistent with a
multiparticle-production branch discontinuity, is finite and continuous on the
Minkowski side, slowly falling to zero when . Finally, we
argue that the spectral function for the multiparticle states appears to
saturate as probes just beyond the discretization scale. We
speculate on the cosmological consequences of such a spectral function.Comment: 6 pages, 1 eps figure embedded in manuscrip
Liquid drop stability for protein crystal growth in microgravity
It is possible to grow protein crystals for biomedical research in microgravity by deploying a protein-rich solution from a syringe, forming a drop in which crystallization can occur with the proper degree of supersaturation. Drop stability is critical to the success of this research, due to the large drop sizes which can be achieved in space. In order to determine the type of syringe tips most suitable to support these large drops, tests were performed during brief periods of weightlessness onboard the NASA KC-135 low-gravity simulation aircraft. The drops were analyzed using three simple models in which the samples were approximated by modified pendulum and spring systems. It was concluded that the higher frequency systems were the most stable, indicating that of the syringes utilized, a disk-shaped configuration provided the most stable environment of low-gravity protein crystal growth
- …