2,302 research outputs found
Simulation studies of improved sounding systems
Two instrument designs for indirect satellite sounding of the atmosphere in the infrared are represented by the High Resolution Infra-Red Sounder, Model 2 (HIRS-2) and by the Advanced Meteorological Temperature Sounder (AMTS). The relative capabilities of the two instruments were tested by simulating satellite measurements from a group of temperature soundings, allowing the two participants to retrieve the temperature profiles from the simulated data, and comparing the results with the original temperature profiles. Four data sets were produced from radiosondes data extrapolated to a suitable altitude, representing continents and oceans, between 30S and 30N. From the information available, temperature profiles were retrieved by two different methods, statistical regression and inversion of the radiative transfer equation. Results show the consequence of greater spectral purity, concomitant increase in the number of spectral intervals, and the better spatial resolution in partly clouded areas. At the same time, the limitation of the HIRS-2 without its companion instrument leads to some results which should be ignored in comparing the two instruments. A clear superiority of AMTS results is shown
Plastic Deformation in Laser-Induced Shock Compression of Monocrystalline Copper
Copper monocrystals were subjected to shock compression at pressures of 10–60 GPa by a short (3 ns initial) duration laser pulse. Transmission electron microscopy revealed features consistent with previous observations of shock-compressed copper, albeit at pulse durations in the µs regime. The results suggest that the defect structure is generated at the shock front. A mechanism for dislocation generation is presented, providing a realistic prediction of dislocation density as a function of pressure. The threshold stress for deformation twinning in shock compression is calculated from the constitutive equations for slip, twinning, and the Swegle-Grady relationship
A Coordinated Radio Afterglow Program
We describe a ground-based effort to find and study afterglows at centimeter
and millimeter wavelengths. We have observed all well-localized gamma-ray
bursts in the Northern and Southern sky since BeppoSAX first started providing
rapid positions in early 1997. Of the 23 GRBs for which X-ray afterglows have
been detected, 10 have optical afterglows and 9 have radio afterglows. A
growing number of GRBs have both X-ray and radio afterglows but lack a
corresponding optical afterglow.Comment: To appear in Proc. of the 5th Huntsville Gamma-Ray Burst Symposium, 5
pages, LaTe
Simulations of Time-Resolved X-Ray Diffraction in Laue Geometry
A method of computer simulation of Time-Resolved X-ray Diffraction (TRXD) in
asymmetric Laue (transmission) geometry with an arbitrary propagating strain
perpendicular to the crystal surface is presented. We present two case studies
for possible strain generation by short-pulse laser irradiation: (i) a
thermoelastic-like analytic model; (ii) a numerical model including effects of
electron-hole diffusion, Auger recombination, deformation potential and thermal
diffusion. A comparison with recent experimental results is also presented.Comment: 9 pages, 11 figure
Supersonic strain front driven by a dense electron-hole plasma
We study coherent strain in (001) Ge generated by an ultrafast
laser-initiated high density electron-hole plasma. The resultant coherent pulse
is probed by time-resolved x-ray diffraction through changes in the anomalous
transmission. The acoustic pulse front is driven by ambipolar diffusion of the
electron-hole plasma and propagates into the crystal at supersonic speeds.
Simulations of the strain including electron-phonon coupling, modified by
carrier diffusion and Auger recombination, are in good agreement with the
observed dynamics.Comment: 4 pages, 6 figure
Transient x-ray diffraction used to diagnose shock compressed Si crystals on the Nova laser
Transient x-ray diffraction is used to record time-resolved information about the shock compression of materials. This technique has been applied on Nova shock experiments driven using a hohlraum x-ray drive. Data were recorded from the shock release at the free surface of a Si crystal, as well as from Si at an embedded ablator/Si interface. Modeling has been done to simulate the diffraction data incorporating the strained crystal rocking curves and Bragg diffraction efficiencies. Examples of the data and post-processed simulations are presented
Probing impulsive strain propagation with x-ray pulses
Pump-probe time-resolved x-ray diffraction of allowed and nearly forbidden
reflections in InSb is used to follow the propagation of a coherent acoustic
pulse generated by ultrafast laser-excitation. The surface and bulk components
of the strain could be simultaneously measured due to the large x-ray
penetration depth. Comparison of the experimental data with dynamical
diffraction simulations suggests that the conventional model for impulsively
generated strain underestimates the partitioning of energy into coherent modes.Comment: 4 pages, 2 figures, LaTeX, eps. Accepted for publication in Phys.
Rev. Lett. http://prl.aps.or
- …