51,743 research outputs found

    Cold dilute neutron matter on the lattice I: Lattice virial coefficients and large scattering lengths

    Full text link
    We study cold dilute neutron matter on the lattice using an effective field theory. We work in the unitary limit in which the scattering length is much larger than the interparticle spacing. In this paper we focus on the equation of state at temperatures above the Fermi temperature and compare lattice simulations to the virial expansion on the lattice and in the continuum. We find that in the unitary limit lattice discretization errors in the second virial coefficient are significantly enhanced. As a consequence the equation of state does not show the universal scaling behavior expected in the unitary limit. We suggest that scaling can be improved by tuning the second virial coefficient rather than the scattering length.Comment: 17 pages, 12 figure

    Equation of state and critical behavior of polymer models: A quantitative comparison between Wertheim's thermodynamic perturbation theory and computer simulations

    Full text link
    We present an application of Wertheim's Thermodynamic Perturbation Theory (TPT1) to a simple coarse grained model made of flexibly bonded Lennard-Jones monomers. We use both the Reference Hyper-Netted-Chain (RHNC) and Mean Spherical approximation (MSA) integral equation theories to describe the properties of the reference fluid. The equation of state, the density dependence of the excess chemical potential, and the critical points of the liquid--vapor transition are compared with simulation results and good agreement is found. The RHNC version is somewhat more accurate, while the MSA version has the advantage of being almost analytic. We analyze the scaling behavior of the critical point of chain fluids according to TPT1 and find it to reproduce the mean field exponents: The critical monomer density is predicted to vanish as n−1/2n^{-1/2} upon increasing the chain length nn while the critical temperature is predicted to reach an asymptotic finite temperature that is attained as n−1/2n^{-1/2}. The predicted asymptotic finite critical temperature obtained from the RHNC and MSA versions of TPT1 is found to be in good agreement with the Θ\Theta point of our polymer model as obtained from the temperature dependence of the single chain conformations.Comment: to appear in J.Chem.Phy

    Casimir energy density in closed hyperbolic universes

    Full text link
    The original Casimir effect results from the difference in the vacuum energies of the electromagnetic field, between that in a region of space with boundary conditions and that in the same region without boundary conditions. In this paper we develop the theory of a similar situation, involving a scalar field in spacetimes with compact spatial sections of negative spatial curvature.Comment: 10 pages. Contribution to the "Fifth Alexander Friedmann International Seminar on Gravitation and Cosmology," Joao Pessoa, Brazil, 2002. Revised version, with altered Abstract and one new referenc

    Trip-Based Public Transit Routing

    Get PDF
    We study the problem of computing all Pareto-optimal journeys in a public transit network regarding the two criteria of arrival time and number of transfers taken. We take a novel approach, focusing on trips and transfers between them, allowing fine-grained modeling. Our experiments on the metropolitan network of London show that the algorithm computes full 24-hour profiles in 70 ms after a preprocessing phase of 30 s, allowing fast queries in dynamic scenarios.Comment: Minor corrections, no substantial changes. To be presented at ESA 201

    Towards a Topological Mechanism of Quark Confinement

    Get PDF
    We report on new analyses of the topological and chiral vacuum structure of four-dimensional QCD on the lattice. Correlation functions as well as visualization of monopole currents in the maximally Abelian gauge emphasize their topological origin and gauge invariant characterization. The (anti)selfdual character of strong vacuum fluctuations is reveiled by smoothing. In full QCD, (anti)instanton positions are also centers of the local chiral condensate and quark charge density. Most results turn out generically independent of the action and the cooling/smoothing method.Comment: 14 pages, Contribution to YKIS9

    Expression of PIK3CA mutant E545K in the mammary gland induces heterogeneous tumors but is less potent than mutant H1047R.

    Get PDF
    The phosphoinositide 3-kinase (PI3K) signaling cascade is a key mediator of cellular growth, survival and metabolism and is frequently subverted in human cancer. The gene encoding for the alpha catalytic subunit of PI3K (PIK3CA) is mutated and/or amplified in ∼30% of breast cancers. Mutations in either the kinase domain (H1047R) or the helical domain (E545K) are most common and result in a constitutively active enzyme with oncogenic capacity. PIK3CA(H1047R) was previously demonstrated to induce tumors in transgenic mouse models; however, it was not known whether overexpression of PIK3CA(E545K) is sufficient to induce mammary tumors and whether tumor initiation by these two types of mutants differs. Here, we demonstrate that expression of PIK3CA(E545K) in the mouse mammary gland induces heterogenous mammary carcinomas but with a longer latency than PIK3CA(H1047R)-expressing mice. Our results suggest that the helical domain mutant PIK3CA(E545K) is a less potent inducer of mammary tumors due to less efficient activation of downstream Akt signaling
    • …
    corecore