3,802 research outputs found

    Correction of Optical Aberrations in Elliptic Neutron Guides

    Full text link
    Modern, nonlinear ballistic neutron guides are an attractive concept in neutron beam delivery and instrumentation, because they offer increased performance over straight or linearly tapered guides. However, like other ballistic geometries they have the potential to create significantly non-trivial instrumental resolution functions. We address the source of the most prominent optical aberration, namely coma, and we show that for extended sources the off-axis rays have a different focal length from on-axis rays, leading to multiple reflections in the guide system. We illustrate how the interplay between coma, sources of finite size, and mirrors with non-perfect reflectivity can therefore conspire to produce uneven distributions in the neutron beam divergence, the source of complicated resolution functions. To solve these problems, we propose a hybrid elliptic-parabolic guide geometry. Using this new kind of neutron guide shape, it is possible to condition the neutron beam and remove almost all of the aberrations, whilst providing the same performance in beam current as a standard elliptic neutron guide. We highlight the positive implications for a number of neutron scattering instrument types that this new shape can bring.Comment: Presented at NOP2010 Conference in Alpe d'Huez, France, in March 201

    Clackamas County - City of Milwaukie Urban Services Study: Financial Analysis

    Get PDF
    The provision of local government services within the urbanizing area of northwest Clackamas County has posed a difficult challenge for a number of years. This report examines the financial aspects of providing urban services to a study area with the following boundaries: the Clackamas County/Multnomah County line to the north, Interstate 205 to the east, highway 224 to the south, and the City of Milwaukie to the west

    Deconvolution‐based distortion correction of EPI using analytic single‐voxel point‐spread functions

    Get PDF
    Purpose To develop a postprocessing algorithm that corrects geometric distortions due to spatial variations of the static magnetic field amplitude, B0, and effects from relaxation during signal acquisition in EPI. Theory and Methods An analytic, complex point‐spread function is deduced for k‐space trajectories of EPI variants and applied to corresponding acquisitions in a resolution phantom and in human volunteers at 3 T. With the analytic point‐spread function and experimental maps of B0 (and, optionally, the effective transverse relaxation time, urn:x-wiley:07403194:media:mrm28591:mrm28591-math-0004) as input, a point‐spread function matrix operator is devised for distortion correction by a Thikonov‐regularized deconvolution in image space. The point‐spread function operator provides additional information for an appropriate correction of the signal intensity distribution. A previous image combination algorithm for acquisitions with opposite phase blip polarities is adapted to the proposed method to recover destructively interfering signal contributions. Results Applications of the proposed deconvolution‐based distortion correction (“DecoDisCo”) algorithm demonstrate excellent distortion corrections and superior performance regarding the recovery of an undistorted intensity distribution in comparison to a multifrequency reconstruction. Examples include full and partial Fourier standard EPI scans as well as double‐shot center‐out trajectories. Compared with other distortion‐correction approaches, DecoDisCo permits additional deblurring to obtain sharper images in cases of significant urn:x-wiley:07403194:media:mrm28591:mrm28591-math-0005 effects. Conclusion Robust distortion corrections in EPI acquisitions are feasible with high quality by regularized deconvolution with an analytic point‐spread function. The general algorithm, which is publicly released on GitHub, can be straightforwardly adapted for specific EPI variants or other acquisition schemes

    Multi-echo investigations of positive and negative CBF and concomitant BOLD changes

    Get PDF

    Multi-echo investigations of positive and negative CBF and concomitant BOLD changes: Positive and negative CBF and BOLD changes

    Get PDF
    Unlike the positive blood oxygenation level-dependent (BOLD) response (PBR), commonly taken as an indication of an ‘activated’ brain region, the physiological origin of negative BOLD signal changes (i.e. a negative BOLD response, NBR), also referred to as ‘deactivation’ is still being debated. In this work, an attempt was made to gain a better understanding of the underlying mechanism by obtaining a comprehensive measure of the contributing cerebral blood flow (CBF) and its relationship to the NBR in the human visual cortex, in comparison to a simultaneously induced PBR in surrounding visual regions. To overcome the low signal-to-noise ratio (SNR) of CBF measurements, a newly developed multi-echo version of a center-out echo planar-imaging (EPI) readout was employed with pseudo-continuous arterial spin labeling (pCASL). It achieved very short echo and inter-echo times and facilitated a simultaneous detection of functional CBF and BOLD changes at 3 T with improved sensitivity. Evaluations of the absolute and relative changes of CBF and the effective transverse relaxation rate, , the coupling ratios, and their dependence on CBF at rest, , indicated differences between activated and deactivated regions. Analysis of the shape of the respective functional responses also revealed faster negative responses with more pronounced post-stimulus transients. Resulting differences in the flow-metabolism coupling ratios were further examined for potential distinctions in the underlying neuronal contributions

    Rapid volumetric brain changes after acute psychosocial stress

    Get PDF
    Stress is an important trigger for brain plasticity: Acute stress can rapidly affect brain activity and functional connectivity, and chronic or pathological stress has been associated with structural brain changes. Measures of structural magnetic resonance imaging (MRI) can be modified by short-term motor learning or visual stimulation, suggesting that they also capture rapid brain changes. Here, we investigated volumetric brain changes (together with changes in T1 relaxation rate and cerebral blood flow) after acute stress in humans as well as their relation to psychophysiological stress measures.Sixty-seven healthy men (25.8±2.7 years) completed a standardized psychosocial laboratory stressor (Trier Social Stress Test) or a control version while blood, saliva, heart rate, and psychometrics were sampled. Structural MRI (T1 mapping / MP2RAGE sequence) at 3T was acquired 45 min before and 90 min after intervention onset. Grey matter volume (GMV) changes were analysed using voxel-based morphometry. Associations with endocrine, autonomic, and subjective stress measures were tested with linear models.We found significant group-by-time interactions in several brain clusters including anterior/mid-cingulate cortices and bilateral insula: GMV was increased in the stress group relative to the control group, in which several clusters showed a GMV decrease. We found a significant group-by-time interaction for cerebral blood flow, and a main effect of time for T1 values (longitudinal relaxation time). In addition, GMV changes were significantly associated with state anxiety and heart rate variability changes.Such rapid GMV changes assessed with VBM may be induced by local tissue adaptations to changes in energy demand following neural activity. Our findings suggest that endogenous brain changes are counteracted by acute psychosocial stress, which emphasizes the importance of considering homeodynamic processes and generally highlights the influence of stress on the brain
    • 

    corecore