4,056 research outputs found

    Antimatter from supersymmetric dark matter

    Get PDF
    We propose low-energy antideuterons in cosmic rays as a new possible signature for indirect detection of supersymmetric dark matter. Since the energy spectrum of the antiproton secondary component is still spoilt by considerable theoretical uncertainties, looking for low-energy antideuterons seems a plausible alternative. We apply our calculation to the AMS experiment, when mounted on the International Spatial Station. If a few low-energy antideuterons will be discovered by AMS, this should be seriously taken as a clue for the existence of relic, massive neutralinos in the dark halo of our Galaxy.Comment: 8 pages, 8 figures, Talk presented at the 4th International Symposium On Sources And Detection Of Dark Matter In The Universe (DM 2000), Marina del Rey, California, 23-25 Feb. 200

    AKARI Near- to Mid-Infrared Imaging and Spectroscopic Observations of the Small Magellanic Cloud. I. Bright Point Source List

    Full text link
    We carried out a near- to mid-infrared imaging and spectroscopic observations of the patchy areas in the Small Magellanic Cloud using the Infrared Camera on board AKARI. Two 100 arcmin2 areas were imaged in 3.2, 4.1, 7, 11, 15, and 24 um and also spectroscopically observed in the wavelength range continuously from 2.5 to 13.4 um. The spectral resolving power (lambda/Delta lambda) is about 20, 50, and 50 at 3.5, 6.6 and 10.6 um, respectively. Other than the two 100 arcmin2 areas, some patchy areas were imaged and/or spectroscopically observed as well. In this paper, we overview the observations and present a list of near- to mid-infrared photometric results, which lists ~ 12,000 near-infrared and ~ 1,800 mid-infrared bright point sources detected in the observed areas. The 10 sigma limits are 16.50, 16.12, 13.28, 11.26, 9.62, and 8.76 in Vega magnitudes at 3.2, 4.1, 7, 11, 15, and 24 um bands, respectively.Comment: 16 pages, 7 figures, accepted for publication in PASJ. Full resolution version is available at http://www-irc.mtk.nao.ac.jp/%7Eyita/smc20100112.pd

    SDW and FISDW transition of (TMTSF)2_2ClO4_4 at high magnetic fields

    Full text link
    The magnetic field dependence of the SDW transition in (TMTSF)2_2ClO4_4 for various anion cooling rates has been measured, with the field up to 27T parallel to the lowest conductivity direction cc^{\ast}. For quenched (TMTSF)2_2ClO4_4, the SDW transition temperature TSDWT_{\rm {SDW}} increases from 4.5K in zero field up to 8.4K at 27T. A quadratic behavior is observed below 18T, followed by a saturation behavior. These results are consistent with the prediction of the mean-field theory. From these behaviors, TSDWT_{\rm {SDW}} is estimated as TSDW0T_{\rm {SDW_0}}=13.5K for the perfect nesting case. This indicates that the SDW phase in quenched (TMTSF)2_2ClO4_4, where TSDWT_{\rm {SDW}} is less than 6K, is strongly suppressed by the two-dimensionality of the system. In the intermediate cooled state in which the SDW phase does not appear in zero field, the transition temperature for the field-induced SDW shows a quadratic behavior above 12T and there is no saturation behavior even at 27T, in contrast to the FISDW phase in the relaxed state. This behavior can probably be attributed to the difference of the dimerized gap due to anion ordering.Comment: 4pages,5figures(EPS), accepted for publication in PR

    Lossy data compression with random gates

    Full text link
    We introduce a new protocol for a lossy data compression algorithm which is based on constraint satisfaction gates. We show that the theoretical capacity of algorithms built from standard parity-check gates converges exponentially fast to the Shannon's bound when the number of variables seen by each gate increases. We then generalize this approach by introducing random gates. They have theoretical performances nearly as good as parity checks, but they offer the great advantage that the encoding can be done in linear time using the Survey Inspired Decimation algorithm, a powerful algorithm for constraint satisfaction problems derived from statistical physics

    The Classification of Obsessive–Compulsive and Related Disorders in the ICD-11

    Get PDF
    Background To present the rationale for the new Obsessive–Compulsive and Related Disorders (OCRD) grouping in the Mental and Behavioural Disorders chapter of the Eleventh Revision of the World Health Organization’s International Classification of Diseases and Related Health Problems (ICD-11), including the conceptualization and essential features of disorders in this grouping. Methods Review of the recommendations of the ICD-11 Working Group on the Classification for OCRD. These sought to maximize clinical utility, global applicability, and scientific validity. Results The rationale for the grouping is based on common clinical features of included disorders including repetitive unwanted thoughts and associated behaviours, and is supported by emerging evidence from imaging, neurochemical, and genetic studies. The proposed grouping includes obsessive–compulsive disorder, body dysmorphic disorder, hypochondriasis, olfactory reference disorder, and hoarding disorder. Body-focused repetitive behaviour disorders, including trichotillomania and excoriation disorder are also included. Tourette disorder, a neurological disorder in ICD-11, and personality disorder with anankastic features, a personality disorder in ICD-11, are recommended for cross-referencing. Limitations Alternative nosological conceptualizations have been described in the literature and have some merit and empirical basis. Further work is needed to determine whether the proposed ICD-11 OCRD grouping and diagnostic guidelines are mostly likely to achieve the goals of maximizing clinical utility and global applicability. Conclusion It is anticipated that creation of an OCRD grouping will contribute to accurate identification and appropriate treatment of affected patients as well as research efforts aimed at improving our understanding of the prevalence, assessment, and management of its constituent disorders

    Role of the dimerized gap due to anion ordering in spin-density wave phase of (TMTSF)2_2ClO4_4 at high magnetic fields

    Get PDF
    Magnetoresistance measurements have been carried out along the highly conducting a axis in the FISDW phase of hydrogened and deuterated (TMTSF)2_2ClO4_4 for various cooling rates through the anion ordering temperature. With increasing the cooling rate, a) the high field phase boundary βHI\beta_{\rm {HI}}, observed at 27 T in hydrogened samples for slowly cooled, is shifted towards a lower field, b) the last semimetallic SDW phase below βHI\beta_{\rm {HI}} is suppressed, and c) the FISDW insulating phase above βHI\beta_{\rm {HI}} is enhanced in both salts. The cooling rate dependence of the FISDW transition and of βHI\beta_{\rm {HI}} in both salts can be explained by taking into account the peculiar SDW nesting vector stabilized by the dimerized gap due to anion ordering.Comment: 6pages,6figures(EPS), accepted for publication in PR
    corecore