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Abstract 
Fluctuation in microscopic distribution of solute atoms will act as a barrier for glide 
motion (i.e. 1D migration) of interstitial clusters in random alloys. We proposed an 
analytical model in which the total interaction energy between an interstitial cluster and 
solute atoms is a superposition of the interaction potential between the cluster and 
individual solute atom. Then we examined the nature of fluctuation in the total 
interaction energy of a gliding cluster. The average amplitude of the fluctuation was 
directly proportional to the square root of both the solute concentration cs  and the 
cluster radius rc . The distance separating local peaks in the fluctuation was virtually 
independent of cs  and rc , but showed dependence only on the range of the interaction 

potential. We proposed a model for another fluctuation in the interaction energy because 
of solute–solute interaction that is effective at high cs . The models interpreted the 

results of the molecular statics simulations of the fluctuating interaction energy for 
interstitial clusters (7i, 61i, and 217i) in dilute and concentrated Fe-Cu alloys with 
random solute distribution. We proposed that the fluctuation in the interaction energy is 
responsible for the short-range 1D migration that is observed in various alloys in 
electron irradiation experiments. The distance between local peaks would give the 
characteristic length of 1D migration in concentrated alloys. 
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1. Introduction 
Clusters of self-interstitial atoms appear in the form of platelet in various metals 

irradiated with high-energy particles. Typical nucleation of interstitial clusters occurs 
through migration and agglomeration of single interstitial atoms during high-energy 
electron irradiation. Clusters of up to a few tens of interstitial atoms are regarded as 
forming directly from large collision cascades under high-energy neutron irradiation 
[1-3]. Interstitial clusters tend to grow large with absorption of interstitial atoms under 
irradiation at high temperatures, although fine-scale clusters accumulate at high 
densities at low temperatures. A recent study of radiation damage for materials 
development of future nuclear power applications revealed that the nature and behavior 
of small interstitial clusters have practical importance in two respects. Small interstitial 
clusters as well as small precipitates induced by the irradiation act as obstacles against 
dislocation motion and are responsible for irradiation-hardening. In addition, small 
interstitial clusters cause glide motion along the direction of the Burgers vector with low 
activation energy, called one-dimensional (1D) migration [4-6], which is considered to 
affect defect structural evolution. A small interstitial cluster is regarded as a ‘bundle of 
crowdions’, and the cluster changes to an interstitial-type dislocation loop with 
increasing cluster size. Analysis of the strain field of the cluster and of interaction 
between the cluster and vacancies suggest that the border of both clusters lays around 
200 interstitial atoms in iron and nickel [7]. Both types of interstitial clusters are 
considered to cause fast 1D migration, and are called interstitial clusters in this paper. 

In situ observation using high-voltage electron microscopy (HVEM) is an 
efficient experimental method for investigating basic processes of 1D migration of 
interstitial clusters because 1D migration is induced by irradiation with high-energy 
electrons [8-15]. The typical 1D migration observed in iron is stepwise positional 
changes occurring at irregular intervals, which often involve fast back-and-forth motion. 
It differs from typical 1D migration observed in atomistic simulations for pure iron 
based on molecular dynamics (MD) method, i.e., fast 1D random walks with low 
activation energy [5,6,16]. Considerable mechanisms for the difference have been 
discussed in terms of interaction of interstitial clusters with other interstitial clusters 
[8-10], vacancies [17], vacancy clusters [18], impurity atoms [11,12,19], and 
impurity–vacancy complex [20]; a low-symmetry (‘non-parallel’) configuration in 
interstitial clusters [21], and impact with fast electrons [11,22].  
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1D migration processes in alloys containing both substitutional and interstitial 
solute/impurity atoms at high concentration are of fundamental and technical 
importance. 1D migration of interstitial clusters has not been reported in alloys with 
conventional 200 kV TEM. In situ observation with HVEM has revealed frequent 1D 
migration at irregular intervals under electron irradiation in commercial alloys and 
high-purity model alloys [9,10,13-15]. The frequency of 1D migration is almost in 
direct proportion to the electron beam intensity [14]. The distance of 1D migration in 
these alloys is shorter than that in iron, and hardly exceeds 10 nm [9,10,13-15]. Among 
the SUS316L and its high-purity model alloys, no clear difference is observed in the 
frequency or distance of 1D migration under irradiation at room temperature, suggesting 
that the fundamental mechanism of the 1D migration is related to major alloying 
elements rather than minor solute/impurity atoms [14].  

In random alloys, because of fluctuation in microscopic distribution of solute 
atoms, total interaction energy between an interstitial cluster and solute atoms fluctuates 
with the glide distance of the cluster, which will act as barriers for 1D migration. 
Examination of the characteristics of the fluctuation in the interaction energy in random 
binary alloys will contribute to the understanding and modeling of 1D migration 
processes in alloys. Cottrell et al. [23] first proposed a model for this subject with 
application of a general concept of solution hardening. The model took account only of 
short-range interactions, i.e., solute atoms in the central core of the loop dislocation. The 
present study adopted another approach for the subject. We assumed the total 
interaction energy to be a superposition of long-range potentials for interaction between 
the interstitial cluster and individual solute atom. We then analyzed the amplitude and 
wavelength of the fluctuation in the total interaction energy. Next we examined an 
applicability of the model using molecular statics (MS) simulations for Fe-Cu alloys 
under typical conditions for solute concentration and cluster radius. We examined also a 
contribution of solute–solute interaction to the total interaction energy. This study was 
undertaken to contribute to the elucidation and modeling of 1D migration processes of 
interstitial clusters in practical alloys. The findings of this study were expected to 
engender a more precise understanding and modeling of microstructural evolution upon 
energetic particle irradiation. 
 
2. Model for interstitial clusters in binary alloys 
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2.1. Interaction between an interstitial cluster and solute atoms 
We proposed an analytical model for the total interaction energy between an 

interstitial cluster and solute atoms in binary alloys, as shown schematically in Figure 1. 
Strong interaction is expected for the solute atoms in a central core of the loop 
dislocation. Letting the cross section of the annular region be 

! 

"  (expressed by the 
number of atoms contained in the region), and letting the thickness be 

! 

b (i.e. the 
atomic distance), then the volume of the region is 

! 

"  atoms. The cross section 

! 

"  will 
be in proportion to the length of the loop dislocation. The number of solute atoms 

! 

n(x) 
in the region fluctuates with position 

! 

x  of the cluster that glides along the direction of 
the Burgers vector. We consider also the weak interaction with solute atoms near the 
annular region by assuming an interaction potential upeak f (v) , where upeak  is the peak 

interaction energy and 

! 

f (v)  is a non-dimensional function of the distance 

! 

v  between 
the solute atom and the annular region in the 

! 

x  direction. The function is 

! 

f (0) =1, 

which decreases monotonically with increasing distance 

! 

v , and which is effectively 

! 

f (v) = 0 for 

! 

" > w ; the interaction range 

! 

w  will be approximately 10b . The positive 
and negative values for upeak  respectively represent repulsive and attractive 

interactions. 
For simplicity, we assume an identical interaction potential upeak f (v)  for all 

solute atoms the projection of which along 

! 

x  direction are on the annular region, and 
ignore the other solute atoms. The total interaction energy in a solid solution is assumed 
to be given by a simple superposition of interaction potentials for individual solute atom, 
thereby by a convolution integral of the two functions as 

u(x) = upeak f (v)n(x ! v)
!w

w
" dv .    (1) 

Characteristics of the fluctuation in the total interaction energy u(x)  are examined in 

the following sections. 
 
2.2. Outlines of the total interaction energy 

The three functions presented above are considered at discrete points with an 
interval 

! 

b in the respective finite periods of 

! 

n j = n jb( ) and 

! 

u j = u jb( ) for 

  

! 

j = 0,1,!, L "1; 

! 

f j = f jb( ) for   

! 

j = "L 2,!, "1, 0,1,!, L 2 "1. Parameter 

! 

L , an even 

number, is sufficiently large that Lb >> w . Using linear convolution, Eq. (1) is written 
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as 

uj = upeak fq nj!q
q=!L

2

L
2
!1

" .   (1’) 

Figure 2(a) portrays outlines of the three functions in a random alloy for solute 
concentration cs . 

(1) The interaction potential is approximated as a Gaussian function 

f (! ) = exp !! 2 " 2( ) ,    (2) 

where 

! 

" (> 0)  is a constant representing the interaction range. The interaction 
energy decreases to upeak e

!1  at ! = ±" . The figure shows cases for ! = 3b  and 
! = 7b . 

(2) The number of solute atoms 

! 

n j in the annular region fluctuates with the migration 
distance of the interstitial cluster. Statistically, 

! 

n j  follows the binomial 

distribution Pb(n,! ,cs ) =! Cn cs
n 1! cs( )!!n , which has average and variance as 

shown below: 

E[n]=!cs ,  V[n]=!cs 1! cs( ) .   (3) 

(3) The total interaction energy 

! 

u j , a superposition of interaction potentials, shows 

periodic fluctuation with local peaks, i.e., smooth hills and valleys. The relation 
between 

! 

n j and uj  is understood from the perspective that the convolution 

operation in Eq. (1’) is a ‘moving average’ of 

! 

n j using 

! 

f j  as weights. Because 
weight 

! 

f j  is a smoothing function, the averaging filters out fine scale fluctuations 
in 

! 

n j , and the trend remains in 

! 

u j . Larger !  averages over a longer range and 

results in smoother profiles. 
 
2.3. Fourier spectrum of the total interaction energy 

The three functions are described using Fourier analysis. Let 

! 

Fk , 

! 

Nk , and 

! 

Uk  
respectively denote the coefficients of discrete Fourier transforms of the functions 

! 

f j , 
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! 

n j , and 

! 

u j . In the present convention, the discrete Fourier transform is, for example, 

Uk =
1
L

uj
j=0

L!1

" e
!i2!

L
kj

k = 0,1,!,L !1 .    (4) 

It denotes the complex amplitude of the wave having wavelength 

! 

" = bL k . Also, 

! 

i  is 

an imaginary unit. Figure 2(b) presents outlines of the amplitude spectra in half of the 
frequency space because Fourier coefficients of real-valued functions are symmetrical at 

! 

k = 0. 
(1) The Fourier transform of the function 

! 

f j  for the interaction potential is another 

Gaussian function of real value, as 

Fk =
!
1
2"
bL

exp !
! 2" 2

b2L2
k2

"

#
$

%

&
' k = 0,1,!, L !1 .   (5) 

The spectrum involves a monotonic decrease at higher spatial frequencies. 
(2) The number of solute atoms 

! 

n j shows random fluctuation. Therefore, its Fourier 

transform has uniform intensity for all spatial frequencies except for 

! 

k = 0. It is 
analogous to that of white noise as a function of time. The uniform power spectrum 
is expressed using the solute concentration cs  and the interaction cross-section 

! 

"  

(see Appendix A for the derivation), as 

 N
k

2
=
V[n]

L !1
=
!c

s
(1! c

s
)

L !1
k =1,2,!,L !1.

 
 (6) 

(3) A convolution operation in the spatial domain is expressed as a product in the 
frequency domain. Eq. (1’) is written as 

Uk = upeakLFk Nk .     (7) 

From Eqs. (5), (6), and (7), we obtain the intensity of the Fourier transform as 

Uk
2
=
!cs (1! cs )
L !1

" upeak
2 # 2

b2
exp !

2" 2# 2

b2L2
k2

"

#
$

%

&
' k =1, 2,!, L !1 .  (8) 

The exponential term in Eq. (8) represents the frequency dependence of the 
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spectrum that is related to the wavelength of the smooth fluctuation in 

! 

u j . Therein, 
Uk  and Fk  have an identical frequency dependence because of the uniform 
spectrum in Nk . In this sense, the characteristics of the fluctuation in 

! 

u j  are 

analogous to those of white noise processed with a low-pass filter. In contrast, the 
pre-exponential factor in Eq. (8), which represents the overall intensity level of the 
spectrum, is directly proportional to the square of the average amplitude of the 
fluctuation in 

! 

u j , as 

V[u]= Uk
2

k=1

L!1

" #
!cs (1! cs )
L !1

" upeak
2 # 2

b2
bL
2"#

!1
$

%
&

'

(
) #

"
2
!cs (1! cs )upeak

2 #

b
.  (9) 

 
2.4. Variation of the total interaction energy 

Figure 3 presents typical variation of 

! 

n j  and 

! 

u j  with the solute concentration 
cs . In dilute alloys for !cs <<1 , the annular region contains no solute atom or 
occasionally a single solute atom with probabilities P(0) =1!!cs  and P(1) =!cs , 
respectively [11]. The total interaction energy 

! 

u j  has isolated peaks corresponding to 
solute atoms in the annular region. The height of peaks is upeak , and the mutual distance 

xb  obeys the geometrical distribution Pg(x,!cs ) =!cs 1!!cs( )x!1 , as described in a 

previous report [11].  
As the solute concentration increases to cs !1 2!"( ) , respective peaks mutually 

overlap. Further overlapping at higher cs  does not flatten the energy profile but 

increases the fluctuation amplitude. Eq. (9) shows that V[u]1 2  is in proportion to 

cs
1 2 1! cs( )1 2 ; note cs

1 2 1! cs( )1 2 " cs1 2  for cs  much lower than 50 atomic percent. The 

average amplitude of the fluctuation V[u]1 2  is also proportional to the peak interaction 
energy upeak , and to the square root of the interaction cross section ! 1 2 . We note that 

the relation reflects a fluctuation in the total number of solute atoms interacting with the 
loop dislocation. On the other hand, Eq. (8) shows that the wavelength of the fluctuation 
is independent of cs  or ! , but only on parameter !  for the interaction range. 
Therefore, as a statistical average, 

! 

u j  varies only in the scale of the vertical axis in 

proportion to cs
1 2 1! cs( )1 2 , which is also readily apparent in Figure 3(b). 
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Figures 4(a) and 4(b) show distributions of the energy difference Ep  and the 
distance dp  between the neighboring local peaks (i.e., hills and valleys) in the total 
interaction energy 

! 

u j . Distance dp  has a unique distribution when it is normalized by 

the interaction range 

! 

" . Again it does not depend on cs  or ! . The energy difference 

Ep  has another unique distribution when it is normalized by V[u]1 2 . 

 
3. Atomistic simulations for the model 
3.1. Description of the calculation cell 

We conducted atomistic simulations of the interaction energy based on the MS 
method to examine the applicability of the analytical model proposed in Sec. 2. We 
selected Fe-Cu system with an interatomic potential given by Ackland et al. [24] that 
has been used for simulations of 1D migration [11,25,26]. The volume size factor of the 
solute copper atom in the iron lattice is about +8.8% in this potential function [24]. We 
induced solute copper atoms at random at concentrations up to 70 atomic percent to 
compare the results with the proposed model under various conditions. Although a 
random alloy is unrealistic at high solute concentrations because of low solubility of 
copper in iron, this study regards the system as an example of binary alloys. Hamaoka et 
al. conducted the HVEM experiments of 1D migration in Fe-Cu alloys from 0.005 to 
0.9 at.%Cu [15]. 

The calculation cell contained about 1.3 × 106 mobile atoms, as shown in Figure 
5(a). A periodic boundary condition was applied for all faces of the calculation cell at 
zero pressure. An interstitial cluster of a hexagonal plate was introduced at the cell 
center. The maximum radius rc  of the interstitial cluster was 1b (7i), 4b (61i), or 8b 

(217i), as shown in Figure 5(b). Atoms on a hexagonal shell were grouped and labeled 
by the maximum radius rh  of the shell. For example, all atoms on the edge of the 
interstitial cluster 217i belong to a shell for rh = 8b . 

 
3.2. Interaction between an interstitial cluster and a single solute copper atom 

An interstitial cluster was fully relaxed in the iron lattice using the MS method. 
Then an iron atom in the cell was replaced by a copper atom. The interaction energy 
was estimated from the change in the total formation energy of the cell after relaxation. 
The typical error in estimating the formation energy was not larger than 0.005 eV. Each 
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symbol in Figure 6(a) designates the interaction energy between an interstitial cluster 
(217i) and a solute atom in individual atomic row that is shown with broken circles in 
Figure 5(b), which corresponds to upeak fi  in the model presented in Sec. 2. Bold lines 

in Figure 6(a) are Gaussian functions fitted to the calculated results, with adoption of 
appropriate values for peak energy upeak  and parameter 

! 

"  for the interaction range. 

The interaction is repulsive for the solute atom in the atomic rows inside the loop 
dislocation ( rh < 8b ) because of the compressional strain, and is attractive on the outside 
( rh > 8b ). The interaction is slight on the edge of the cluster ( rh = 8b ). Results for 7i 

were described in earlier reports [11,26]. Figures 6(b) and 6(c) summarize the 
parameters upeak  and !  for the three cluster radii. They have similar variation to that 

shown against rh ! rc , the radial distance from the dislocation core. The difference in 
upeak  was less than 0.022 eV for atomic rows between edge and corner positions (shown 

with broken circles and a box, respectively in Figure 5(b)) within a hexagonal shell 
from rh = 6b  to 12b  in 217i. These results suggest that the long-range interaction 

between the cluster and a solute atom is described better by defining the interaction 
potential for an individual shell. 

 
3.3. Interaction energy in random Fe-Cu alloys 

We calculated the total interaction energy corresponding to 

! 

u j  in Sec. 2 

according to the MS method shown schematically in Figure 5(c): 
(1) The initial formation energy of the calculation cell is denoted as Ej

a . 

(2) The solute atoms in the single atomic layer at the cell surface, 

! 

0 " x < b (shaded 
region in Figure 5(c)), were replaced by those with a new random distribution. The 
formation energy of the cell after relaxation was Ej

b . The difference Ej
b !Ej

a  

resulted from the change in the number and the distribution of solute atoms in the 
surface layer. The interstitial cluster was far from the layer. Therefore, this 
treatment was assumed not to affect the interaction energy between the cluster and 
solute atoms. 

 (3) The distribution of all the solute atoms in the cell was translated toward 

! 

"x  
direction for a distance 

! 

b. This operation was done by switching the parameters 
indicating atomic species without changing the atom coordinates. The formation 
energy of the cell after relaxation was Ej+1

a . The difference Ej+1
a !Ej

b  was 

equivalent to the net change in the interaction energy of the cluster that migrates for 
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a distance 

! 

b toward 

! 

+x  direction, uj+1 !uj = Ej+1
a !Ej

b . 

An iteration of the sequence produced a total interaction energy profile longer than the 
size of the calculation cell (i.e. 120 b) while introducing random solute distributions. 
Bold lines in Figure 7 show typical profiles of the interaction energy. The amplitude of 
the fluctuation in the interaction energy exceeded a few electron volts in concentrated 
alloys, even though the energy of the individual interaction potential was around 0.1 eV. 
The fluctuation will act as barriers for 1D migration of interstitial clusters larger than a 
few nano-meters. 
 
3.4. Comparison between MS simulation and the analytical model 

Thin lines in Figure 7 show the interaction energy in which interaction potentials 
urh, peak frh, j  were superposed according to the solute distribution nrh, j  used in the MS 

calculation as 

uj = urh, peak frh, j nrh, j!q
q=!L

2

L
2
!1

"
rh
" .    (1”) 

Suffix rh  implies that the functions are defined for an individual hexagonal shell with 
radius 

! 

rh . The interaction potential urh, peak frh, j  was produced with interpolation of 

parameters urh, peak  and !rh  shown in Figures 6(b) and 6(c). The superposition 

reproduces the MS results at low cs , but only the position and shape of individual local 
peak at high cs . Comparison of the two profiles at low magnification (Fig. 7(a)) reveals 
that the discrepancy at high cs  results from slow fluctuation involved in the results of 

MS calculation. We describe in Sec. 4A that slow fluctuation arose from interaction 
among solute atoms (shown by dotted lines in Figure 7). We show in the following that 
the amplitude and wavelength of the fluctuation in 

! 

u j  are fundamentally consistent 

with the analytical model. 
The symbols and lines presented in Figure 8(a) show a comparison of the average 

amplitude of the fluctuation V[u]1 2  between the MS calculation and the superposed 
interaction potentials. The latter was given by a sum of the variances for an individual 
shell as 
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V[u] ! !
2
cs (1" cs )

b
"rh# rhurh, peak

22

rh
# ,   (9’) 

because the contribution of the individual shell to the total variance was mutually 

independent. The average amplitude of the fluctuation V[u]1 2  for multiple shells is 

directly proportional to cs
1 2 1! cs( )1 2 . The two results show good correspondence at cs  

lower than several atomic percent. 
Shaded bars and bold lines in Figure 9(a) respectively show Fourier spectra Uk  

of the total interaction energy obtained using the MS calculation and the superposition. 
The two spectra show good correspondence at high frequencies. The discrepancy 
observed at very low frequencies is again caused by the contribution of the slow 
fluctuation of the solute–solute interaction, as shown by dotted lines in Figure 9(a). The 
spectra for the superposition have similar frequency dependence, which are probably 
reproduced by an appropriate blending of the spectra for Gaussian functions from 
! = 3b  to 10b  shown in Figure 9(b). 

The energy difference Ep  and distance dp  of the neighboring peaks were 

measured in the total interaction energy 

! 

u j  obtained using the MS calculation. Figure 
10(a) presents broad distributions of the energy difference Ep , whereas Figure 8(b) 

shows that the average Ep  is almost proportional to rc
1 2  and cs

1 2 . Effects of the slow 

fluctuation caused by solute–solute interaction were less apparent on the average Ep  

than on V[u]1 2  shown in Figure 8(a). Figure 10(b) shows that dp  is 0.5–2 nm, and 

that its distribution apparently does not depend on cs  or rc . These results are 

fundamentally consistent with the simple model, except for the difference in the 
distribution of dp . The fraction at short dp  is larger for the MS results (Fig. 10(b)) 

than the simple model (Fig. 4(b)). The difference might be attributed to the interference 
of Gaussian functions among different upeak  and !  in the MS calculation. Finally, we 
note a correlation between the energy difference Ep  and the distance dp ; local peaks 
with longer dp  tend to have larger Ep , as shown in Figure 10(b). The correlation is 

understood from the Fourier spectra: the lower amplitude at higher frequency allows 
only a smooth fluctuation in the spatial domain. 
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4. Discussion 
4.1. Solute–solute interaction 

Solute–solute interaction was ignored in the model described above. The 
interaction energy between two solute atoms was estimated from changes in the total 
formation energy of the calculation cell containing two solute atoms at various distances. 
The energy was -0.075 eV [24], -0.035 eV [24], and +0.020 eV, respectively, for pairs of 
the first-, second-, and third-nearest distances in the iron lattice; it was negligible for 
more distant pairs. The negative values denote attractive interactions. In this section, 
fluctuation in the solute–solute interaction energy of migrating interstitial clusters was 
examined to elucidate the characteristics of fluctuation in the total interaction energy, 
especially at higher cs . 

1D migration of an interstitial cluster is regarded as a glide of the loop dislocation 
on the cylindrical glide plane. Simultaneously, the two parts of the crystal, i.e., inside 
and outside the glide cylinder, shift from each other by distance 

! 

b along the Burgers 
vector. Figure 11(a) portrays configurational changes of close solute pairs as the 
interstitial cluster migrates leftward. It is noteworthy that the figure shows an interstitial 
cluster fixed and solute atoms relative to the cluster. The changes in the mutual distance 
of solute pairs will change the interaction energy. We estimated the fluctuation in the 
total energy of solute–solute interaction based on the following assumptions: 1) we 
considered only the solute pairs for which the ‘atomic bond’ lies across the glide plane 
as shown in the top row in Figure 11(a). 2) We ignored gradual variation in the bond 
distance as the dislocation core passed by the solute pair. Instead we identified the first-, 
second-, and third-nearest pairs in the two states without the distortion that is apparent 
long before and after the passage of the dislocation core. We assumed that the two states 
were exchanged stepwise at the closest approach of the dislocation core. The solute 
pairs shown in the top row in Figure 11(a) are to change from (i) to (iii) stepwise at the 
dislocation core (ii). Then the number of close solute pairs in the calculation cell 
fluctuates with every 1D migration for distance 

! 

b. The fluctuation is a random walk 
process, as described quantitatively in Appendix B. 

From the fluctuation in the number of close solute pairs of the first-, second-, and 
third-nearest distances and the respective interaction energies, we estimated the 
fluctuation in the total energy of solute–solute interaction and shown by dotted lines in 
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Figure 7. The number of close solute pairs is in direct proportion to cs
2 . Therefore, the 

fluctuation is negligible at low cs . The sum of solute–defect interaction and 

solute–solute interaction is shown by broken lines, and better reproduces the MS results 
(bold lines) at high cs . Consequently, the characteristics of the fluctuation in the Fe-Cu 

system are described using a filtered white noise for solute–defect interaction and 
random walk for solute–solute interaction. The total energy of solute–solute interaction 
fluctuates more slowly than that of solute–defect interactions. This slow fluctuation is 
also apparent in the Fourier spectra portrayed in Figure 9(a). The solute–defect 
interaction (bold lines) had larger amplitude than the solute–solute interaction (dotted 
lines) at high spatial frequencies. The range of 1D migration is limited by the fast 
fluctuation in the solute–defect interaction. The wavelength of the fluctuation will be 
the characteristic length of 1D migration in concentrated alloys. 
 
4.2. Solute–defect interaction 

Interaction between a cluster and a single solute atom is the important element in 
the proposed model. In the classical theory of elasticity, the interaction energy between 
an inclusion at the cylindrical coordinate (r, z)  and a circular dislocation loop of radius 

R  at the origin is given as [27] 

E =
!V

3"
µ
1+#

1!#

b

R+ r( )
2

+ z
2

R
2 ! r2 ! z2

R! r( )
2

+ z
2
E

4rR

R+ r( )
2

+ z
2

"

#

$
$

%

&

'
'
+K

4rR

R+ r( )
2

+ z
2

"

#

$
$

%

&

'
'

(

)

*
*

+

,

-
-
,  (10) 

where functions K(k)  and E(k)  are the complete elliptic integrals of the first and 
second kind. In addition, µ  and !  respectively represent the shear modulus and 

Poisson’s ratio. Only the size misfit !V  is the variable parameter. The peak interaction 
energy depends on the misfit, but the interaction range does not. Thin lines in Figure 
6(a) are interaction potentials for a solute atom with volume size factor of +15% in the 
iron lattice, which was chosen to correspond to the MS results in the atomic rows apart 
from the dislocation core, rh = 0b  and rh =12b . Near the dislocation core, however, 

Eq. (10) gives interaction potentials with larger peak energy and smaller width.  
The singularities in the interaction energy at the dislocation core can be removed 

by introducing a constant A  [28] into an expression for stress components of a circular 
dislocation loop [29]. Figure 12 (a) shows a variation of the interaction energy profiles 
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with the constant A  for the atomic rows near the dislocation core. Profiles for A = 0  
are identical to those of Eq. (10) [27] that were shown by thin lines in Figure 6(a). The 
divergent behavior in the profile is suppressed with increasing A . It is reported that 
A ! 0.1R  produces suitable interaction energy profile for very small interstitial clusters 
(10i) [28]. For the present cluster (217i), profiles from A = 0.05R  to A = 0.2R  have 
the peak energy comparable to that of the MS results, but still have smaller peak width. 
We note that the elastic theory is better only for long-range interaction (i.e., ! ! 7b ) 
inside the cluster rh = 7b ; the Gaussian functions decay too fast for the long-range. The 
same observation applies to rh = 6b  and rh = 3b  in Figure 6 (a). Because the 

short-range interaction with larger energies has a large contribution to the total 
interaction energy, the Gaussian function will be a better approximation for the present 
case. 

Symbols in Figure 12 (b) show interatomic distance along the Burgers vector in 
the atomic rows examined in Figures 6(a). Thin lines are those derived from the 
analytical solutions of the multistring Frenkel-Kontorova model for an edge dislocation 
and an interstitial cluster [30,31]: the atomic displacement of n -th atom in a string is 

given by un = b 2( )! b !( ) arctan n! n0( ) N( ) , where n0  is the index of the center 

atom of the crowdion. By adopting appropriate values for the parameter N, i.e., an 
effective dimensionless width of a crowdion, the solutions represent well the 
interatomic distance un+1 !un + b  of the atomic rows inside the cluster. A comparison 

between Figures 6(a) and 12(b) suggests a rough relation between the displacement 
field and the interaction energy. Results for 7i are available in earlier report [11]. 
However, precise interaction energy profiles would not be obtained from the 
displacement field. For example, the large displacement field observed in rh = 8b  does 

not result in significant interaction energy. This might be explained partly by 
displacement of the copper atom along the direction perpendicular to the Burgers 
vector; the oversized solute atom on the periphery of the interstitial cluster was found to 
displace outward for the distance around 0.01b.  

Density functional calculations suggest an importance of chemical interactions in 
addition to solute size factor for the interaction between a single interstitial atom in iron 
and a solute atom, depending on the solute elements [32]. For the interaction with an 
interstitial cluster, however, few reports describe atomistic simulations using 
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semi-empirical interatomic potentials. In a Ni-Au system, gold is an oversized solute 
atom in nickel with an extremely large volume size factor: 63.6%. The activation energy 
for an interstitial cluster (7i and 19i) to overcome a gold atom inside the cluster is 
0.8–1.0 eV [33], which will correspond to upeak  in the system. Interaction in a Fe-Cr 

system is reported using an advanced semi-empirical potential that is parameterized by 
application of the density functional theory [34]. The sign of the interaction is opposite 
that of Fe-Cu system. The solute chromium atom inside a cluster (7i, 37i, or 91i) has 
attractive interaction, and the peak energy upeak  is from -0.1 to -0.2 eV for the solute 

atom on the edge of the cluster. We estimated that the interaction potential corresponds 

to ! = 4b .  
 
4.3. Fluctuation in interaction energy in alloys 

Cottrell et al. [23] analyzed the fluctuation in the total interaction energy of 
interstitial clusters in alloys with application of the theory of solid solution hardening 
[35]. In solution hardening, a flexible dislocation line of infinite length gains potential 
energy by adjusting its shape along valleys in a field of randomly arranged energy hills 
and valleys, where the dislocation must bow out at least the distance 

! 

w , the range of 

interaction between dislocation and a solute atom. A critical length of dislocation 
segment, called the Labusch length, exists as 

!L =
Tw

2Û cs
1 2

!

"
#

$

%
&

2 3

,     (11) 

where T  is the line tension and Û  corresponds to upeak  in our notation. The 

fluctuation of potential energy on the scale !L  has amplitude of 

E
L
=
T

2

!

"
#

$

%
&

1 3

w
4 3
Û
2 3
c
s

1 3 .   (12) 

Dislocations can bow out only in scales larger than !L  because bowing out in smaller 

scales involves an increase in the line energy in excess of the gain in the potential 
energy. Such a dislocation is pinned by the fluctuation of the solute distribution, in the 
sense that the interaction energy must increase to pass over a hill-top into the next 
valley. The dislocation needs an external energy supply to move. In the solution 
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hardening the pinning energy is equivalent to the net energy gain. Cottrell et al. 
proposed the pinning energy for a dislocation loop of finite perimeter length nb  under 
no driving stress acting on the loop [23], 

E ! E
L

nb

!
L

"

#
$

%

&
'

1 3

.     (13) 

The pinning energy for 217i was estimated as 0.003, 0.09, and 0.26 eV for 

Fe-0.3%, 3%, and 30% Cu, respectively, with adoption of Û = 0.1 eV , nb = 50 b , 
w =1b , and Tb =1 eV  in Eqs. (11)–(13). The latter two parameters were after Cottrell 

et al. for iron-based alloys [23]. The pinning energies were much lower than the average 
Ep  in the MS results presented in Figure 8(b). Parameter w =1b  represents a 

short-range interaction for solute atoms in the central core of the loop dislocation, 
ignoring the contribution of longer-range interaction. However, Figure 3 demonstrated a 
considerable difference in the interaction energy profiles between the short-range 
interaction upeak nj  and the long-range interaction uj . When we adopted w = 5 b , the 

pinning energy increased to 0.20, 0.55, and 1.54 eV, respectively, which were 
comparable to the average Ep . We still note substantial differences between Cottrell’s 

model and the MS results on Fe-Cu alloys: 1) We did not observe the loop dislocation to 
bow out in deflection as long as w = 5 b  during MD or MS simulations when we 

visualized the central core of the loop dislocation using the Wigner–Seitz cell method. 
2) The typical pinning energy was directly proportional to cs

4 9 rc
1 3  in Cottrell’s model 

but to cs
1 2 rc

1 2  for Fe-Cu alloys. The total interaction energy was interpreted better by 
the superposition of cluster–solute interaction and solute–solute interaction, neither of 
which considered the energy gain by bowing out of the loop dislocation. 

 
4.4. Brief comments 

Fluctuation in the total interaction energy is expected to affect dynamic processes 
of 1D migration in alloys, depending on the temperature, species, concentrations of 
solute elements, and cluster size. Intermittent 1D migration is observed for interstitial 
clusters of a few nanometers in diameter under electron irradiation [9,10,13-15]. The 1D 
migration distance has a common distribution among the alloys examined. The fraction 
decreases concomitantly with increasing 1D migration distance, and the distance only 
slightly exceeds 10 nm. There would be a common mechanism for the distribution of 
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1D migration distance in these concentrated alloys. Our tentative model of experimental 
1D migration is in the following. Interstitial clusters are in a stationary state in 
concentrated alloys, at a position where the formation energy of the clusters achieves a 
local minimum on their respective 1D migration tracks. The distribution of solute atoms 
is expected to change continuously from one random distribution to another (both are 
equivalent to each other) under electron irradiation because of displacement of atoms 
and the following recovery of produced Frenkel pairs. This ‘mixing’ effect of solute 
atoms changes the stable position of the cluster on its 1D migration track, and the 
clusters induce 1D migration into a new stable position. We presume that the 
experimental 1D migration distance reflects the wavelength of the fluctuation in the 
total interaction energy.  

Atomistic simulations of diffusion coefficients of 1D migration have been 
reported for Fe-Cu and Fe-Cr alloys [25,36]. It is reported that the solute concentration 
dependence of 1D migration diffusivity (7i-91i) is not monotonous in Fe-Cr alloys; the 
diffusivity has a lower peak around 10 at.% Cr [36]. We have conducted dynamic 
simulations of 1D migration in Fe-Cu alloys in which we examined the behavior of 
interstitial clusters in terms of the fluctuation in the interaction energy. We also 
examined the mechanism of initiation of 1D migration under electron irradiation to 
elucidate the experimental 1D migration behavior in alloys. Those results will be 
presented elsewhere. 
 
5. Conclusion 

For understanding and modeling of 1D migration of interstitial clusters in dilute 
and concentrated alloys, we studied characteristics of the fluctuation in the formation 
energy of interstitial clusters gliding along the Burgers vector. We proposed and 
examined two mechanisms of the fluctuation, which were solute–defect and 
solute–solute interactions, each of which reflects fluctuation in the microscopic 
distribution of solute atoms in terms of the cluster. 

For the solute–defect interaction, the total interaction energy was assumed to be a 
superposition of a Gaussian function representing long-range interaction between the 
cluster and individual solute atom. An application of the model to random binary alloys 
revealed that the characteristics of the fluctuation resembled those of white noise 
processed with a low-pass filter. The average energy difference of the neighboring local 
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peaks in the fluctuation was directly proportional to the square root of both the solute 
concentration cs  and the cluster radius rc . The distribution of the distance separating 
local peaks was virtually independent of cs  and rc , but was dependent only on the 

range of the interaction potential. For the solute–solute interaction, we considered the 
fluctuation in the number of close solute pairs caused by the mutual shift of the crystal 
inside and outside of the cylindrical glide plane. The fluctuation was a kind of random 
walk process, and was effective for cs  higher than a few percent. 

The models interpreted the results of MS simulation for fluctuating interaction 
energy in Fe-Cu alloys under systematically varied conditions. The typical energy 
height of local peaks exceeded a few electron volts in concentrated alloys, even though 
the energy of individual solute–defect interaction was around 0.1 eV. The distance 
between local peaks ranged up to 2 nm. The wavelength of the fluctuation attributable 
to the solute–defect interaction would be the characteristic length of 1D migration in 
concentrated alloys. The wavelength was thought to be responsible for the short-range 
1D migration of interstitial clusters observed in various alloys under electron irradiation.  
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Appendix A 

This section presents derivation of the power spectrum of the number of solute 
atoms 

! 

n j  in the central core of a cluster. Parseval’s theorem shows that the Fourier 
transform preserves the energy of the original quantity. For real-valued function 

! 

n j , 

! 

1
L

n j
2

j= 0

L"1

# = Nk
2

k= 0

L"1

# .    (A1) 

The left term of Eq. (A1) represents E[n2 ] . Consequently, the average and the variance 
of the function 

! 

n j  are related to the Fourier coefficients as 

E[n]= 1
L

nj
j=0

L!1

" = N0 ,  V[n]= E[n2 ]!E[n]2 = Nk
2

k=1

L!1

" .  (A2) 

The power spectrum N
k

2  is uniform except for 

! 

k = 0 because of a random variation 

in 

! 

n j . Then we obtain Eq. (6). 

 
Appendix B 

This section presents a description of a quantitative analysis of the fluctuation in 
the total number of close solute pairs as an interstitial cluster glide along the Burgers 
vector. In the model presented in Sec. 4A, the close atomic sites AB that lie across the 
glide plane are replaced by AC at the dislocation core, as shown in Figure 11 (a). Let the 
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number of such replacements around the cluster be m  by every 1D migration for the 
distance 

! 

b. For example, m  for the first, second, and third nearest sites is estimated, 
respectively, as 102, 102, and 252 around 217i, and 18, 18, and 42 for 7i. 

We assume a random distribution of solute atoms at concentration cs . The 

probability of finding x  solute atoms on m  sites A is given by the binomial 

probability distribution Pb(x,m,cs ) =x Cm cs
x 1! cs( )n!x . Similarly, the probability of 

finding y (! x)  solute pairs on m  sites AB is given as Pb(x,m,cs )Pb(y, x,cs )
x=0

m

!  or 

Pb(y,m,cs
2 ) . A glide of the cluster for the distance 

! 

b induces m  replacements from 
AB to AC, and the number of close solute pairs will increase, decrease, or stay 
unchanged depending on the solute distribution on sites A, B, and C. The probability of 

changing !  solute pairs is expressed as 

P(±!) = Pb(x,m,cs ) Pb(y, x,cs )
y=0

m

" Pb(y+!, x,cs )
x=0

m

" .   (B1) 

The typical probability distributions are shown in Figure 11(b). The probability takes 
the maximum at ! = 0 , and is symmetrical at ! = 0 . Probability P(!)  can be 

approximated by a normal distribution shown by thin lines for large clusters (with large 
m ) at high cs . 

In successive glide motions of a cluster in random alloys, changes !  in 
individual steps will be mutually independent. Therefore, the fluctuation in the number 
of close solute pairs is a kind of random-walk processes. In the well-known ‘simple 
random walk’, a particle moves +1 or -1 with equal probability at each step. The normal 

distribution in !  suggests that the present fluctuation can be described better as 
Brownian motion than as the simple random walk. 
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Figure 1. Schematic illustration of the present model describing the total interaction 
energy between an interstitial cluster and solute atoms in random binary alloys. 
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Figure 2. Typical profiles of the interaction potential 

! 

f j , the number of solute atoms 

! 

n j  in the region of strong interaction, and total interaction energy 

! 

u j , in (a) the spatial 

domain and (b) the frequency domain (Fourier spectra). Symbol * denotes the 
convolution operation. Parameter 

! 

"  denotes the interaction range of 3b or 7b. 
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Figure 3. Typical variation of (a) the number of solute atoms 

! 

n j  in the region of strong 
interaction, and (b) the corresponding total interaction energy 

! 

u j  with the solute 
concentration cs . 

! 

" =100 atoms, upeak =+0.1 eV, and ! =5b. 
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Figure 4. Normalized distributions of (a) the energy difference Ep  and (b) the distance 
dp  of the neighboring local peaks in the total interaction energy 

! 

u j . The standard 
condition was ! =5b, cs =3%, 

! 

" =100 atoms, and upeak =+0.1 eV. Only the indicated 

parameter was changed for the other conditions. 
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Figure 5. (a) Geometry of the calculation cell used in the atomistic simulations based on 
the MS method. (b) Configuration of the interstitial cluster observed along the 

! 

x  
direction. Full and open circles respectively correspond to atomic rows with and without 
the extra plane of 217i. Shaded hexagons show 61i and 7i. (c) Method of calculation of 
the total interaction energy between an interstitial cluster and solute atoms. 
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Figure 6. (a) Interaction energy between an interstitial cluster (217i) and a solute copper 
atom in atomic rows from rh = 0b  to rh =12b  as a function of mutual distance 

! 

v  in 

the 

! 

x  direction (see Figure 1(a)). Symbols show the results of MS calculation. Bold 

lines are the Gaussian function upeak exp !v2 ! 2( )  fitted to the MS results. Interaction 

energy below the broken lines represents attractive interaction. The solute atom was 
placed on the atomic rows shown by broken circles in Figure 5(b). Thin lines show the 
interaction energy between a circular loop and an inclusion according to the elastic 

theory: R = 8.5b  and !V =1.21A
o 3

 in Eq. (10). 



 28 

 
 
 
 

 
Figure 6. (b) (c) Variation of upeak  and !  with radii of the interstitial cluster rc  and 

of the hexagonal shell rh  that contains the solute atom. 
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Figure 7. Fluctuation in the total interaction energy between an interstitial cluster and 
solute atoms in a random alloy as a function of the 1D migration distance of the cluster. 
Bold lines show results of MS calculations. Thin lines show the superposition of 
interaction potentials given by Eq. (1”). Dotted lines show contributions of the 
solute–solute interaction. Results are shown at the common scale in (a), and are 
magnified for individual conditions in (b). 
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Figure 8. (a) Standard deviation of the total interaction energy as a function of the solute 
concentration c

s
 and the radius r

c  of the interstitial cluster. Symbols and lines 

respectively show results of MS calculation and superposition of interaction potentials. 
L = 500b . (b) Averaged energy difference Ep  of the neighboring peaks in the total 

interaction energy obtained by MS calculation as a function of c
s
 and r

c
. Lines show 

cs
1/2  relations fitted to the MS results at low c

s
. 
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Figure 9. (a) Normalized Fourier spectra of the total interaction energy profiles 
compared among MS method, superposition of interaction potentials, and solute–solute 
interaction. The Hamming window function was applied before the Fourier transform to 
reduce the boundary effect. L =1200b . (b) Normalized Fourier spectra of Gaussian 
functions given by Eq. (5). 
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Figure 10. Typical distributions of (a) the energy difference Ep  and (b) the mutual 
distance dp  of the neighboring local peaks in the total interaction energy 

! 

u j  

estimated using MS method. Symbols and error bars in (b) show the average, and the 
upper and lower quartiles of Ep  for individual bins of the histogram. 
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Figure 11. (a) Schematic illustration of the model describing the changes in 
solute–solute interaction by 1D migration of interstitial clusters in random binary alloys. 
(b) Typical probability distributions of the change !  in the number of close solute 
pairs by the 1D migration of interstitial cluster for distance 

! 

b. Thin lines show normal 
distributions fitted to P(!) . 
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Figure 12. (a) Interaction energy between an interstitial cluster (217i) and a solute 
copper atom in atomic rows from rh = 7b  to rh = 9b  as a function of mutual distance 

! 

v  in the 

! 

x  direction. Symbols and bold lines are the MS results and the Gaussian 
functions, which were already shown in Figure 6(a). Thin lines show the interaction 

energy according to the elastic theory [28,29]: R = 8.5b  and !V =1.21A
o 3

. (b) 

Interatomic distance along the Burgers vector. Symbols and thick lines are the results of 
MS calculation for the atomic rows identical to those in Figure 6(a). Thin lines show 
analytical solutions of the multistring Frenkel-Kontorova model [30]; the parameter N 
representing the effective width of a crowdion was fitted to the MS results. 
 


