24,329 research outputs found

    A simple proof of the unconditional security of quantum key distribution

    Get PDF
    Quantum key distribution is the most well-known application of quantum cryptography. Previous proposed proofs of security of quantum key distribution contain various technical subtleties. Here, a conceptually simpler proof of security of quantum key distribution is presented. The new insight is the invariance of the error rate of a teleportation channel: We show that the error rate of a teleportation channel is independent of the signals being transmitted. This is because the non-trivial error patterns are permuted under teleportation. This new insight is combined with the recently proposed quantum to classical reduction theorem. Our result shows that assuming that Alice and Bob have fault-tolerant quantum computers, quantum key distribution can be made unconditionally secure over arbitrarily long distances even against the most general type of eavesdropping attacks and in the presence of all types of noises.Comment: 13 pages, extended abstract. Comments will be appreciate

    Security proof of a three-state quantum key distribution protocol without rotational symmetry

    Get PDF
    Standard security proofs of quantum key distribution (QKD) protocols often rely on symmetry arguments. In this paper, we prove the security of a three-state protocol that does not possess rotational symmetry. The three-state QKD protocol we consider involves three qubit states, where the first two states, |0_z> and |1_z>, can contribute to key generation and the third state, |+>=(|0_z>+|1_z>)/\sqrt{2}, is for channel estimation. This protocol has been proposed and implemented experimentally in some frequency-based QKD systems where the three states can be prepared easily. Thus, by founding on the security of this three-state protocol, we prove that these QKD schemes are, in fact, unconditionally secure against any attacks allowed by quantum mechanics. The main task in our proof is to upper bound the phase error rate of the qubits given the bit error rates observed. Unconditional security can then be proved not only for the ideal case of a single-photon source and perfect detectors, but also for the realistic case of a phase-randomized weak coherent light source and imperfect threshold detectors. Our result on the phase error rate upper bound is independent of the loss in the channel. Also, we compare the three-state protocol with the BB84 protocol. For the single-photon source case, our result proves that the BB84 protocol strictly tolerates a higher quantum bit error rate than the three-state protocol; while for the coherent-source case, the BB84 protocol achieves a higher key generation rate and secure distance than the three-state protocol when a decoy-state method is used.Comment: 10 pages, 3 figures, 2 column

    Optimal Capacitive Load Matching of Micro Electret Power Generators

    Get PDF
    This paper presents a model of micro-electret power generators. This model uses two capacitors with fixed charge density and variable area to model the actual micro electret power generator. Simulations of power output with capacitive loads and resistive loads are presented. The power output decreases as the load capacitance increases while it increases as the resistive load increases. To verify the model and simulation results, power output generation experiments are performed and the results confirm the simulation. To collect useful energy from the power generator, a small capacitive load, rather than a resistive load, is required

    Field-induced structure transformation in electrorheological solids

    Full text link
    We have computed the local electric field in a body-centered tetragonal (BCT) lattice of point dipoles via the Ewald-Kornfeld formulation, in an attempt to examine the effects of a structure transformation on the local field strength. For the ground state of an electrorheological solid of hard spheres, we identified a novel structure transformation from the BCT to the face-centered cubic (FCC) lattices by changing the uniaxial lattice constant c under the hard sphere constraint. In contrast to the previous results, the local field exhibits a non-monotonic transition from BCT to FCC. As c increases from the BCT ground state, the local field initially decreases rapidly towards the isotropic value at the body-centered cubic lattice, decreases further, reaching a minimum value and increases, passing through the isotropic value again at an intermediate lattice, reaches a maximum value and finally decreases to the FCC value. An experimental realization of the structure transformation is suggested. Moreover, the change in the local field can lead to a generalized Clausius-Mossotti equation for the BCT lattices.Comment: Submitted to Phys. Rev.

    A quantum protocol for cheat-sensitive weak coin flipping

    Full text link
    We present a quantum protocol for the task of weak coin flipping. We find that, for one choice of parameters in the protocol, the maximum probability of a dishonest party winning the coin flip if the other party is honest is 1/sqrt(2). We also show that if parties restrict themselves to strategies wherein they cannot be caught cheating, their maximum probability of winning can be even smaller. As such, the protocol offers additional security in the form of cheat sensitivity.Comment: 4 pages RevTex. Differs from the journal version only in that the sentences: "The ordering of the authors on this paper was chosen by a coin flip implemented by a trusted third party. TR lost." have not been remove

    On bit-commitment based quantum coin flipping

    Get PDF
    In this paper, we focus on a special framework for quantum coin flipping protocols,_bit-commitment based protocols_, within which almost all known protocols fit. We show a lower bound of 1/16 for the bias in any such protocol. We also analyse a sequence of multi-round protocol that tries to overcome the drawbacks of the previously proposed protocols, in order to lower the bias. We show an intricate cheating strategy for this sequence, which leads to a bias of 1/4. This indicates that a bias of 1/4 might be optimal in such protocols, and also demonstrates that a cleverer proof technique may be required to show this optimality.Comment: The lower bound shown in this paper is superceded by a result of Kitaev (personal communication, 2001

    Simple Proof of Security of the BB84 Quantum Key Distribution Protocol

    Get PDF
    We prove the security of the 1984 protocol of Bennett and Brassard (BB84) for quantum key distribution. We first give a key distribution protocol based on entanglement purification, which can be proven secure using methods from Lo and Chau's proof of security for a similar protocol. We then show that the security of this protocol implies the security of BB84. The entanglement-purification based protocol uses Calderbank-Shor-Steane (CSS) codes, and properties of these codes are used to remove the use of quantum computation from the Lo-Chau protocol.Comment: 5 pages, Latex, minor changes to improve clarity and fix typo

    The planet search programme at the ESO CES and HARPS. IV. The search for Jupiter analogues around solar-like stars

    Full text link
    In 1992 we began a precision radial velocity (RV) survey for planets around solar-like stars with the Coude Echelle Spectrograph and the Long Camera (CES LC) at the 1.4 m telescope in La Silla (Chile). We have continued the survey with the upgraded CES Very Long Camera (VLC) and HARPS, both at the 3.6 m telescope, until 2007. The observations for 31 stars cover a time span of up to 15 years and the RV precision permit a search for Jupiter analogues. We perform a joint analysis for variability, trends, periodicities, and Keplerian orbits and compute detection limits. Moreover, the HARPS RVs are analysed for correlations with activity indicators (CaII H&K and CCF shape). We achieve a long-term RV precision of 15 m/s (CES+LC, 1992-1998), 9 m/s (CES+VLC, 1999-2006), and 2.8 m/s (HARPS, 2003-2009, including archive data), resp. This enables us to confirm the known planets around Iota Hor, HR 506, and HR 3259. A steady RV trend for Eps Ind A can be explained by a planetary companion. On the other hand, we find previously reported trends to be smaller for Beta Hyi and not present for Alp Men. The candidate planet Eps Eri b was not detected despite our better precision. Also the planet announced for HR 4523 cannot be confirmed. Long-term trends in several of our stars are compatible with known stellar companions. We provide a spectroscopic orbital solution for the binary HR 2400 and refined solutions for the planets around HR 506 and Iota Hor. For some other stars the variations could be attributed to stellar activity. The occurrence of two Jupiter-mass planets in our sample is in line with the estimate of 10% for the frequency of giant planets with periods smaller than 10 yr around solar-like stars. We have not detected a Jupiter analogue, while the detections limits for circular orbits indicate at 5 AU a sensitivity for minimum mass of at least 1 M_Jup (2 M_Jup) for 13% (61%) of the stars.Comment: 63 pages, 24 figures (+33 online figures), 13 Tables, accepted for publication in A&A (2012-11-13

    Intrabodies Binding the Proline-Rich Domains of Mutant Huntingtin Increase Its Turnover and Reduce Neurotoxicity

    Get PDF
    Although expanded polyglutamine (polyQ) repeats are inherently toxic, causing at least nine neurodegenerative diseases, the protein context determines which neurons are affected. The polyQ expansion that causes Huntington's disease (HD) is in the first exon (HDx-1) of huntingtin (Htt). However, other parts of the protein, including the 17 N-terminal amino acids and two proline (polyP) repeat domains, regulate the toxicity of mutant Htt. The role of the P-rich domain that is flanked by the polyP domains has not been explored. Using highly specific intracellular antibodies (intrabodies), we tested various epitopes for their roles in HDx-1 toxicity, aggregation, localization, and turnover. Three domains in the P-rich region (PRR) of HDx-1 are defined by intrabodies: MW7 binds the two polyP domains, and Happ1 and Happ3, two new intrabodies, bind the unique, P-rich epitope located between the two polyP epitopes. We find that the PRR-binding intrabodies, as well as VL12.3, which binds the N-terminal 17 aa, decrease the toxicity and aggregation of HDx-1, but they do so by different mechanisms. The PRR-binding intrabodies have no effect on Htt localization, but they cause a significant increase in the turnover rate of mutant Htt, which VL12.3 does not change. In contrast, expression of VL12.3 increases nuclear Htt. We propose that the PRR of mutant Htt regulates its stability, and that compromising this pathogenic epitope by intrabody binding represents a novel therapeutic strategy for treating HD. We also note that intrabody binding represents a powerful tool for determining the function of protein epitopes in living cells
    • …
    corecore