525 research outputs found
Constructive role of non-adiabaticity for quantized charge pumping
We investigate a recently developed scheme for quantized charge pumping based
on single-parameter modulation. The device was realized in an AlGaAl-GaAs gated
nanowire. It has been shown theoretically that non-adiabaticity is
fundamentally required to realize single-parameter pumping, while in previous
multi-parameter pumping schemes it caused unwanted and less controllable
currents. In this paper we demonstrate experimentally the constructive and
destructive role of non-adiabaticity by analysing the pumping current over a
broad frequency range.Comment: Presented at ICPS 2010, July 25 - 30, Seoul, Kore
Room-Temperature Quantum Hall Effect in Graphene
The quantum Hall effect (QHE), one example of a quantum phenomenon that occur
on a truly macroscopic scale, has been attracting intense interest since its
discovery in 1980 and has helped elucidate many important aspects of quantum
physics. It has also led to the establishment of a new metrological standard,
the resistance quantum. Disappointingly, however, the QHE could only have been
observed at liquid-helium temperatures. Here, we show that in graphene - a
single atomic layer of carbon - the QHE can reliably be measured even at room
temperature, which is not only surprising and inspirational but also promises
QHE resistance standards becoming available to a broader community, outside a
few national institutions.Comment: Published in Science online 15 February 200
Experimental evidence for the formation of stripe phases in Si/SiGe
We observe pronounced transport anisotropies in magneto-transport experiments
performed in the two-dimensional electron system of a Si/SiGe heterostructure.
They occur when an in-plane field is used to tune two Landau levels with
opposite spin to energetic coincidence. The observed anisotropies disappear
drastically for temperatures above 1 K. We propose that our experimental
findings may be caused by the formation of a unidirectional stripe phase
oriented perpendicular to the in-plane field.Comment: 4 pages, 3 figure
CuAu-type ordering in epitaxial CuInS<sub>2</sub> films
Ordering of Cu and In atoms in near-stoichiometric CuInS2 epitaxial films grown on Si (111) by molecular beam epitaxy was studied by transmission electron microscopy. Nonchalcopyrite ordering of the metal atoms in CuInS2 is observed, which is identified as CuAu-type ordering. Sharp spots in electron diffraction patterns reveal the ordered Cu and In atom planes alternating along the [001] direction over a long range. High-resolution electron microscopy confirms this ordering. The CuAu-ordered structure coexists with the chalcopyrite ordered structure, in agreement with theoretical prediction
Generation of energy selective excitations in quantum Hall edge states
We operate an on-demand source of single electrons in high perpendicular
magnetic fields up to 30T, corresponding to a filling factor below 1/3. The
device extracts and emits single charges at a tunable energy from and to a
two-dimensional electron gas, brought into well defined integer and fractional
quantum Hall (QH) states. It can therefore be used for sensitive electrical
transport studies, e.g. of excitations and relaxation processes in QH edge
states
Magnetoroton scattering by phonons in the fractional quantum Hall regime
Motivated by recent phonon spectroscopy experiments in the fractional quantum
Hall regime we consider processes in which thermally excited magnetoroton
excitations are scattered by low energy phonons. We show that such scattering
processes can never give rise to dissociation of magnetorotons into unbound
charged quasiparticles as had been proposed previously. In addition we show
that scattering of magnetorotons to longer wavelengths by phonon absorption is
possible because of the shape of the magnetoroton dispersion curve and it is
shown that there is a characteristic cross-over temperature above which the
rate of energy transfer to the electron gas changes from an exponential
(activated) to a power law dependence on the effective phonon temperature.Comment: LaTex document, 3 eps figures. submitted to Phys Rev
Magnetic-field-induced singularities in spin dependent tunneling through InAs quantum dots
Current steps attributed to resonant tunneling through individual InAs
quantum dots embedded in a GaAs-AlAs-GaAs tunneling device are investigated
experimentally in magnetic fields up to 28 T. The steps evolve into strongly
enhanced current peaks in high fields. This can be understood as a
field-induced Fermi-edge singularity due to the Coulomb interaction between the
tunneling electron on the quantum dot and the partly spin polarized Fermi sea
in the Landau quantized three-dimensional emitter.Comment: 5 pages, 4 figure
Highly Anisotropic Transport in the Integer Quantum Hall Effect
At very large tilt of the magnetic (B) field with respect to the plane of a
two-dimensional electron system the transport in the integer quantum Hall
regime at = 4, 6, and 8 becomes strongly anisotropic. At these filling
factors the usual {\em deep minima} in the magneto-resistance occur for the
current flowing {\em perpendicular} to the in-plane B field direction but
develop into {\em strong maxima} for the current flowing {\em parallel} to the
in-plane B field. The origin of this anisotropy is unknown but resembles the
recently observed anisotropy at half-filled Landau levels.Comment: 4 pages, 4 figure
Quantum Hall Effect in Three Dimensional Layered Systems
Using a mapping of a layered three-dimensional system with significant
inter-layer tunneling onto a spin-Hamiltonian, the phase diagram in the strong
magnetic field limit is obtained in the semi-classical approximation. This
phase diagram, which exhibit a metallic phase for a finite range of energies
and magnetic fields, and the calculated associated critical exponent,
, agree excellently with existing numerical calculations. The
implication of this work for the quantum Hall effect in three dimensions is
discussed.Comment: 4 pages + 4 figure
Dynamical scaling of the quantum Hall plateau transition
Using different experimental techniques we examine the dynamical scaling of
the quantum Hall plateau transition in a frequency range f = 0.1-55 GHz. We
present a scheme that allows for a simultaneous scaling analysis of these
experiments and all other data in literature. We observe a universal scaling
function with an exponent kappa = 0.5 +/- 0.1, yielding a dynamical exponent z
= 0.9 +/- 0.2.Comment: v2: Length shortened to fulfil Journal criteri
- …