1,420 research outputs found

    Quasilinear Drift Of Cosmic Rays In Weak Turbulent Electromagnetic Fields

    Full text link
    A general quasilinear transport parameter for particle drift in arbitrary turbulence geometry is presented. The new drift coefficient is solely characterized by a nonresonant term and is evaluated for slab and two-dimensional turbulence geometry. The calculations presented here demonstrate that fluctuating electric fields are a key quantity for understanding quasilinear particle drift in slab geometry. It is shown that particle drift does not exist in unpolarized and purely magnetic slab fluctuations. This is in stark contrast to previous models, which are restricted to slab geometry and the field line random walk limit. The evaluation of the general transport parameter for two-dimensional turbulence geometry, presented here for the first time for dynamical magnetic turbulence, results in a drift coefficient valid for a magnetic power spectrum and turbulence decay rate varying arbitrarily in wavenumber. For a two-component, slab/two-dimensional turbulence model, numerical calculations are presented. The new quasilinear drift, induced by the magnetic perturbations, is compared with a standard drift expression related to the curvature and gradient of an unperturbed heliospheric background magnetic field. The considerations presented here offer a solid ground and natural explanation for the hitherto puzzling observation that drift models often describe observations much better when drift effects are reduced.Comment: 23 pages, 6 figures, accepted for publication in Ap

    Near Infrared Spectra of Type Ia Supernovae

    Full text link
    We report near infrared (NIR) spectroscopic observations of twelve ``Branch-normal'' Type Ia supernovae (SNe Ia) which cover the wavelength region from 0.8-2.5 microns. Our sample more than doubles the number of SNe Ia with published NIR spectra within three weeks of maximum light. The epochs of observation range from thirteen days before maximum light to eighteen days after maximum light. A detailed model for a Type Ia supernovae is used to identify spectral features. The Doppler shifts of lines are measured to obtain the velocity and, thus, the radial distribution of elements. The NIR is an extremely useful tool to probe the chemical structure in the layers of SNe Ia ejecta. This wavelength region is optimal for examining certain products of the SNe Ia explosion that may be blended or obscured in other spectral regions. We identify spectral features from MgII, CaII, SiII, FeII, CoII, NiII and possibly MnII. We find no indications for hydrogen, helium or carbon in the spectra. The spectral features reveal important clues about the physical characteristics of SNe Ia. We use the features to derive upper limits for the amount of unburned matter, to identify the transition regions from explosive carbon to oxygen burning and from partial to complete silicon burning, and to estimate the level of mixing during and after the explosion.Comment: 44 pages, 7 figures, 3 tables, accepted by Ap

    Model Flames in the Boussinesq Limit: The Effects of Feedback

    Get PDF
    We have studied the fully nonlinear behavior of pre-mixed flames in a gravitationally stratified medium, subject to the Boussinesq approximation. Key results include the establishment of criterion for when such flames propagate as simple planar flames; elucidation of scaling laws for the effective flame speed; and a study of the stability properties of these flames. The simplicity of some of our scalings results suggests that analytical work may further advance our understandings of buoyant flames.Comment: 11 pages, 14 figures, RevTex, gzipped tar fil

    Flexo-printed Busbarless Solar Cells for Multi-wire Interconnection

    Get PDF
    AbstractFlexographic printing is a high-throughput rotational relief printing method and represents a promising innovative approach for the front side metallization of silicon solar cells. The ability to realize narrow contact fingers with very low silver consumption makes this technology particularly interesting for busbarless solar cells with wire-interconnection like Meyer Burger's SmartWire Connection Technology (SWCT). This study intends to provide a comprehensive evaluation of the general feasibility for this approach. Fundamental printing tests are carried out to investigate important influence parameters like the flexible printing plate and the correlation between printing pressure and contact finger width. We found out that contact finger elements on elastomer printing plates down to an actual width of wf = 7 ± 2 ÎŒm can be realized using a high-resolution laser-engraving process. Furthermore, we show that printed contact finger width increases by approx. Δwf ≈ 10 ÎŒm for each Δploc = 0.05 MPa of pressure increase and thus has a strong impact on the contact grid. Busbarless Al BSF Cz-Si solar cells with flexo-printed front side metallization are fabricated and measured using Pasan GridTOUCH/SpotLIGHT-system. The best group of solar cells obtains a mean conversion efficiency of η = 19.0% and a maximum conversion efficiency of ηmax = 19.4%. A mini-module with the best two solar cells achieved a aperture conversion efficiency of η = 15.8%. Causes for cell-to-module losses are investigated and discussed in detail. In summary, we demonstrate the successful application of flexographic printing technology for the front side metallization of busbarless solar cells with multi-wire interconnection

    Signature of Electron Capture in Iron-Rich Ejecta of SN 2003du

    Full text link
    Late-time near-infrared and optical spectra are presented for the normal-bright SN2003du. At about 300 days after the explosion, the emission profiles of well isolated [FeII] lines (in particular that of the strong 1.644mu feature) trace out the global kinematic distribution of radioactive material in the expanding. In SN2003du, the 1.644 mu [FeII] line shows a flat-topped, profile, indicative of a thick but hollow-centered expanding shell, rather than a strongly-peaked profile that would be expected from a ``center-filled'' distribution.Based on detailed models for exploding Chandrasekhar mass white dwarfs, we show that the feature is consistent with spherical explosion models.Our model predicts central region of non-radioactive electron-capture elements up to 2500--3000km/s as a consequence of burning under high density, and an extended region of 56Ni up to 9,000--10,000km/s. Furthermore our analysis indicates that the 1.644mu [FeII] profile is not consistent with strong mixing between the regions of electron- capture isotopes and the 56Ni layers as is predicted by detailed 3D models for nuclear deflagration fronts. We discuss the possibility that the flat-topped profile could be produced as a result of an infrared catastrophe and conclude that such an explanation is unlikely. We put our results in context to other SNeIa and briefly discuss the implications of our result for the use of SNe Ia as cosmological standard candles.Comment: 12 pages + 8 figures, ApJ (in press, Dec. 20, 2004) For high resolution figures send E-mail to [email protected]

    Phase space reduction of the one-dimensional Fokker-Planck (Kramers) equation

    Full text link
    A pointlike particle of finite mass m, moving in a one-dimensional viscous environment and biased by a spatially dependent force, is considered. We present a rigorous mapping of the Fokker-Planck equation, which determines evolution of the particle density in phase space, onto the spatial coordinate x. The result is the Smoluchowski equation, valid in the overdamped limit, m->0, with a series of corrections expanded in powers of m. They are determined unambiguously within the recurrence mapping procedure. The method and the results are interpreted on the simplest model with no field and on the damped harmonic oscillator.Comment: 13 pages, 1 figur

    On Validating an Astrophysical Simulation Code

    Full text link
    We present a case study of validating an astrophysical simulation code. Our study focuses on validating FLASH, a parallel, adaptive-mesh hydrodynamics code for studying the compressible, reactive flows found in many astrophysical environments. We describe the astrophysics problems of interest and the challenges associated with simulating these problems. We describe methodology and discuss solutions to difficulties encountered in verification and validation. We describe verification tests regularly administered to the code, present the results of new verification tests, and outline a method for testing general equations of state. We present the results of two validation tests in which we compared simulations to experimental data. The first is of a laser-driven shock propagating through a multi-layer target, a configuration subject to both Rayleigh-Taylor and Richtmyer-Meshkov instabilities. The second test is a classic Rayleigh-Taylor instability, where a heavy fluid is supported against the force of gravity by a light fluid. Our simulations of the multi-layer target experiments showed good agreement with the experimental results, but our simulations of the Rayleigh-Taylor instability did not agree well with the experimental results. We discuss our findings and present results of additional simulations undertaken to further investigate the Rayleigh-Taylor instability.Comment: 76 pages, 26 figures (3 color), Accepted for publication in the ApJ

    Nonequilibrium spectral diffusion due to laser heating in stimulated photon echo spectroscopy of low temperature glasses

    Full text link
    A quantitative theory is developed, which accounts for heating artifacts in three-pulse photon echo (3PE) experiments. The heat diffusion equation is solved and the average value of the temperature in the focal volume of the laser is determined as a function of the 3PE waiting time. This temperature is used in the framework of nonequilibrium spectral diffusion theory to calculate the effective homogeneous linewidth of an ensemble of probe molecules embedded in an amorphous host. The theory fits recently observed plateaus and bumps without introducing a gap in the distribution function of flip rates of the two-level systems or any other major modification of the standard tunneling model.Comment: 10 pages, Revtex, 6 eps-figures, accepted for publication in Phys. Rev.

    South Korea's automotive labour regime, Hyundai Motors’ global production network and trade‐based integration with the European Union

    Get PDF
    This article explores the interrelationship between global production networks(GPNs) and free trade agreements (FTAs) in the South Korean auto industry and its employment relations. It focuses on the production network of the Hyundai Motor Group (HMG) — the third biggest automobile manufacturer in the world — and the FTA between the EU and South Korea. This was the first of the EU’s ‘new generation’ FTAs, which among other things contained provisions designed to protect and promote labour standards. The article’s argument is twofold. First, that HMG’s production network and Korea’s political economy (of which HMG is a crucial part) limited the possibilities for the FTA’s labour provisions to take effect. Second, that the commercial provisions in this same FTA simultaneously eroded HMG’s domestic market and corporate profitability, leading to adverse consequences for auto workers in the more insecure and low-paid jobs. In making this argument, the article advances a multiscalar conceptualization of the labour regime as an analytical intermediary between GPNs and FTAs. It also provides one of the first empirical studies of the EU–South Korea FTA in terms of employment relations, drawing on 105 interviews with trade unions, employer associations, automobile companies and state officials across both parties

    Kinetic Theory of a Dilute Gas System under Steady Heat Conduction

    Get PDF
    The velocity distribution function of the steady-state Boltzmann equation for hard-core molecules in the presence of a temperature gradient has been obtained explicitly to second order in density and the temperature gradient. Some thermodynamical quantities are calculated from the velocity distribution function for hard-core molecules and compared with those for Maxwell molecules and the steady-state Bhatnagar-Gross-Krook(BGK) equation. We have found qualitative differences between hard-core molecules and Maxwell molecules in the thermodynamical quantities, and also confirmed that the steady-state BGK equation belongs to the same universality class as Maxwell molecules.Comment: 36 pages, 4 figures, 5 table
    • 

    corecore