148 research outputs found

    Collisions of low-energy antiprotons with molecular hydrogen: ionization, excitation and stopping power

    Full text link
    A time-dependent coupled-channel approach was used to calculate ionization, excitation, and energy-loss cross sections as well as energy spectra for antiproton and proton collisions with molecular hydrogen for impact energies 8 keV < E < 4000 keV.Comment: 4 pages, 4 figures, conference LEAP0

    Stopping power of antiprotons in H, H2, and He targets

    Full text link
    The stopping power of antiprotons in atomic and molecular hydrogen as well as helium was calculated in an impact-energy range from 1 keV to 6.4 MeV. In the case of H2 and He the targets were described with a single-active electron model centered on the target. The collision process was treated with the close-coupling formulation of the impact-parameter method. An extensive comparison of the present results with theoretical and experimental literature data was performed in order to evaluate which of the partly disagreeing theoretical and experimental data are most reliable. Furthermore, the size of the corrections to the first-order stopping number, the average energy transferred to the target electrons, and the relative importance of the excitation and the ionization process for the energy loss of the projectile was determined. Finally, the stopping power of the H, H2, and He targets were directly compared revealing specific similarities and differences of the three targets.Comment: v1: 12 pages, 8 figures, and 1 table v2: 15 pages, 9 figures, and 2 tables; extended discussion on IPM in Method; influence of double ionization on stopping power discussed in Result

    Average thermospheric wind patterns over the polar regions, as observed by CHAMP

    No full text
    International audienceMeasurements of the CHAMP accelerometer are utilized to investigate the average thermospheric wind distribution in the polar regions at altitudes around 400 km. This study puts special emphasis on the seasonal differences in the wind patterns. For this purpose 131 days centered on the June solstice of 2003 are considered. Within that period CHAMP's orbit is precessing once through all local times. The cross-track wind estimates of all 2030 passes are used to construct mean wind vectors for 918 equal-area cells. These bin averages are presented in corrected geomagnetic coordinates. Both hemispheres are considered simultaneously providing summer and winter responses for the same prevailing geophysical conditions. The period under study is characterized by high magnetic activity (Kp=4?) but moderate solar flux level (F10.7=124). Our analysis reveals clear wind features in the summer (Northern) Hemisphere. Over the polar cap there is a fast day-to-night flow with mean speeds surpassing 600 m/s in the dawn sector. At auroral latitudes we find strong westward zonal winds on the dawn side. On the dusk side, however, an anti-cyclonic vortex is forming. The dawn/dusk asymmetry is attributed to the combined action of Coriolis and centrifugal forces. Along the auroral oval the sunward streaming plasma causes a stagnation of the day-to-night wind. This effect is particularly clear on the dusk side. On the dawn side it is evident only from midnight to 06:00 MLT. The winter (Southern) Hemisphere reveals similar wind features, but they are less well ordered. The mean day-to-night wind over the polar cap is weaker by about 35%. Otherwise, the seasonal differences are mainly confined to the dayside (06:00?18:00 MLT). In addition, the larger offset between geographic and geomagnetic pole in the south also causes hemispheric differences of the thermospheric wind distribution

    Substorm-related thermospheric density and wind disturbances derived from CHAMP observations

    Get PDF
    The input of energy and momentum from the magnetosphere is most efficiently coupled into the high latitude ionosphere-thermosphere. The phenomenon we are focusing on here is the magnetospheric substorm. This paper presents substorm related observations of the thermosphere derived from the CHAMP satellite. With its sensitive accelerometer the satellite can measure the air density and zonal winds. Based on a large number of substorm events the average high and low latitude thermospheric response to substorm onsets was deduced. During magnetic substorms the thermospheric density is enhanced first at high latitudes. Then the disturbance travels at an average speed of 650 m/s to lower latitudes, and 3–4 h later the bulge reaches the equator on the night side. Under the influence of the Coriolis force the travelling atmospheric disturbance (TAD) is deflected westward. In accordance with present-day atmospheric models the disturbance zonal wind velocities during substorms are close to zero near the equator before midnight and attain moderate westward velocities after midnight. In general, the wind system is only weakly perturbed (Δvy&lt;20 m/s) by substorms

    Ionospheric currents estimated simultaneously from CHAMP satelliteand IMAGE ground-based magnetic field measurements: a statisticalstudy at auroral latitudes

    Get PDF
    One important contribution to the magnetic field measured at satellite altitude and at ground level comes from the external currents. We used the total field data sampled by the Overhauser Magnetometer on CHAMP and the horizontal magnetic field measurements of the IMAGE ground-based magnetometer network to study the ionospheric Hall current system in the auroral regions. For the CHAMP data a current model consisting of a series of lines and placed at a height of 110km is fitted to the magnetic field signature sampled on the passage across the polar region. The derived current distributions depend, among others, on season and on the local time of the satellite track. At dawn/dusk the auroral electrojets can be detected most clearly in the auroral regions. Their intensity and location are evidently correlated with the &lt;i&gt;A E&lt;/i&gt; activity index. For a period of almost two years the results obtained from space and the currents determined from ground-based observations are studied. For the full IMAGE station array a newly-developed method of spherical elementary current systems (SECS) is employed to compute the 2-D equivalent current distribution, which gives a detailed picture of an area covering latitudes 60° – 80° N and 10° – 30° E in the auroral region. Generally, the current estimates from satellite and ground are in good agreement. The results of this survey clearly show the average dependence of the auroral electrojet on season and local time. This is particularly true during periods of increased auroral activity. The correlation coefficient of the results is close to one in the region of sizeable ionospheric current densities. Also the ratio of the current densities, as determined from above and below the ionosphere, is close to unity. It is the first time that the method of Hall current estimate from a satellite has been validated quantitatively by ground-based observations. Among others, this result is of interest for magnetic main field modelling, since it demonstrates that ground-based observations can be used to predict electrojet signatures in satellite magnetic field scalar data.&lt;br&gt;&lt;br&gt; &lt;b&gt;Key words.&lt;/b&gt; Ionosphere (auroral Ionosphere; electric fields and currents; ionosphere-magnetosphere interactions

    Superposed epoch analysis applied to large-amplitude travelling convection vortices

    Get PDF

    Near-equatorial Pi2 and Pc3 waves observed by CHAMP and on SAMBA/MAGDAS stations

    Get PDF
    We have examined simultaneous ULF activity in the Pi2 and Pc3 bands at the near-equatorial magnetic stations in South America from SAMBA and MAGDAS arrays and low-orbiting CHAMP satellite during its passage over this meridional network. At the nighttime, both Pi2 and Pc3 waves in the upper ionosphere and on the ground are nearly of the same magnitude and in-phase. At the same time, the daytime Pc3 pulsations on the ground and in space are nearly out-of-phase. Comparison of observational results with the theoretical notions on the MHD wave interaction with the system ionosphere–atmosphere–ground suggests that nighttime low-latitude Pi2 and Pc3 wave signatures are produced by magnetospheric fast compressional mode. The daytime near-equatorial Pc3 waves still resist a quantative interpretation. These waves may be produced by a combination of two mechanisms: compressional mode leakage through the ionosphere, and by oscillatory ionospheric current spreading towards equatorial latitudes
    • …
    corecore