93,261 research outputs found
The energy of interaction between two hydrogen atoms by the Gaussian-type functions
Energy of interaction between two hydrogen atoms in their ground states described by Gauss-type function
Inclusive angular distribution of alpha and Li fragments produced in the Fe-C and Fe-Pb collisions at 1.88 GeV/u
The LS (laboratory system) emission angles theta for 2188 and 298 Li fragments, produced inclusively in relativistic Fe-C and Fe-Pb collisions, have been measured in reference to incident Fe-ion beam tracks nearby in nuclear emulsion. An empirical differential frequency formula, dN(cot theta) = exp (a + b cot theta)d(cot theta) is obtained with the constant b approx. = -0.026 at 1.88 GeV/u, which seems to be independent on the kinds of target nucleus as well as on the kinds of projectile fragments
Development of an airborne laser bathymeter
An airborne laser depth sounding system was built and taken through a complete series of field tests. Two green laser sources were tried: a pulsed neon laser at 540 nm and a frequency-doubled Nd:YAG transmitter at 532 nm. To obtain a depth resolution of better than 20 cm, the pulses had a duration of 5 to 7 nanoseconds and could be fired up to at rates of 50 pulses per second. In the receiver, the signal was detected by a photomultiplier tube connected to a 28 cm diameter Cassegrainian telescope that was aimed vertically downward. Oscilloscopic traces of the signal reflected from the sea surface and the ocean floor could either be recorded by a movie camera on 35 mm film or digitized into 500 discrete channels of information and stored on magnetic tape, from which depth information could be extracted. An aerial color movie camera recorded the geographic footprint while a boat crew of oceanographers measured depth and other relevant water parameters. About two hundred hours of flight time on the NASA C-54 airplane in the area of Chincoteague, Virginia, the Chesapeake Bay, and in Key West, Florida, have yielded information on the actual operating conditions of such a system and helped to optimize the design. One can predict the maximum depth attainable in a mission by measuring the effective attenuation coefficient in flight. This quantity is four times smaller than the usual narrow beam attenuation coefficient. Several square miles of a varied underwater landscape were also mapped
Stochastic level-set method for shape optimisation
We present a new method for stochastic shape optimisation of engineering
structures. The method generalises an existing deterministic scheme, in which
the structure is represented and evolved by a level-set method coupled with
mathematical programming. The stochastic element of the algorithm is built on
the methods of statistical mechanics and is designed so that the system
explores a Boltzmann-Gibbs distribution of structures. In non-convex
optimisation problems, the deterministic algorithm can get trapped in local
optima: the stochastic generalisation enables sampling of multiple local
optima, which aids the search for the globally-optimal structure. The method is
demonstrated for several simple geometrical problems, and a proof-of-principle
calculation is shown for a simple engineering structure.Comment: 17 pages, 10 fig
Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons
We experimentally and theoretically demonstrate subwavelength scale localization of spoof surface plasmon polaritons at a point defect in a two-dimensional groove metal array. An analytical expression for dispersion relation of spoof surface plasmon polaritons substantiates the existence of a band gap where a defect mode can be introduced. A waveguide coupling method allows us to excite localized spoof surface plasmon polariton modes and measure their resonance frequencies. Numerical calculations confirm that localized modes can have a very small modal volume and a high Q factor both of which are essential in enhancing light-matter interactions. Interestingly, we find that the localized spoof surface plasmon polariton has a significant toroidal dipole moment, which is responsible for the high Q factor, as well as an electric quadrupole moment. In addition, the dispersion properties of spoof surface plasmon polaritons are analyzed using a modal expansion method and numerical calculations
Driving in ZZ Ceti stars - Problem solved?
There is a fairly tight correlation between the pulsation periods and
effective temperatures of ZZ Ceti stars (cooler stars have longer periods).
This seems to fit the theoretical picture, where driving occurs in the partial
ionization zone, which lies deeper and deeper within the star as it cools. It
is reasonable to assume that the pulsation periods should be related to the
thermal timescale in the region where driving occurs. As that region sinks
further down below the surface, that thermal timescale increases. Assuming this
connection, the pulsation periods could provide an additional way to determine
effective temperatures, independent of spectroscopy. We explore this idea and
find that in practice, things are not so simple.Comment: 4 pages, 3 figure
Energies of knot diagrams
We introduce and begin the study of new knot energies defined on knot
diagrams. Physically, they model the internal energy of thin metallic solid
tori squeezed between two parallel planes. Thus the knots considered can
perform the second and third Reidemeister moves, but not the first one. The
energy functionals considered are the sum of two terms, the uniformization term
(which tends to make the curvature of the knot uniform) and the resistance term
(which, in particular, forbids crossing changes). We define an infinite family
of uniformization functionals, depending on an arbitrary smooth function
and study the simplest nontrivial case , obtaining neat normal forms
(corresponding to minima of the functional) by making use of the Gauss
representation of immersed curves, of the phase space of the pendulum, and of
elliptic functions
Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal
We report on the response of a high light-output NaI(Tl) crystal to nuclear
recoils induced by neutrons from an Am-Be source and compare the results with
the response to electron recoils produced by Compton scattered 662 keV
-rays from a Cs source. The measured pulse-shape discrimination
(PSD) power of the NaI(Tl) crystal is found to be significantly improved
because of the high light output of the NaI(Tl) detector. We quantify the PSD
power with a quality factor and estimate the sensitivity to the interaction
rate for weakly interacting massive particles (WIMPs) with nucleons, and the
result is compared with the annual modulation amplitude observed by the
DAMA/LIBRA experiment. The sensitivity to spin-independent WIMP-nucleon
interactions based on 100 kgyear of data from NaI detectors is estimated
with simulated experiments, using the standard halo model.Comment: 11page
- …