9,176 research outputs found

    Electronic and magnetic properties of the kagome systems YBaCo4O7 and YBaCo3MO7 (M=Al, Fe)

    Full text link
    We present a combined experimental and theoretical x-ray absorption spectroscopy (XAS) study of the new class of cobaltates YBaCo4O7 and YBaCo3MO7 (M= Al, Fe). The focus is on the local electronic and magnetic properties of the transition metal ions in these geometrically frustrated kagome compounds. For the mixed valence cobaltate YBaCo4O7, both the Co2+ and Co3+ are found to be in the high spin state. The stability of these high spin states in tetrahedral coordination is compared with those in the more studied case of octahedral coordination. For the new compound YBaCo3FeO7, we find exclusively Co2+ and Fe3+ as charge states

    Local electronic structure of Fe2+^{2+} impurities in MgO thin films: Temperature-dependent soft x-ray absorption spectroscopy study

    Full text link
    We report on the local electronic structure of Fe impurities in MgO thin films. Using soft x-ray absorption spectroscopy (XAS) we verified that the Fe impurities are all in the 2+ valence state. The fine details in the line shape of the Fe L2,3L_{2,3} edges provide direct evidence for the presence of a dynamical Jahn-Teller distortion. We are able to determine the magnitude of the effective D4hD_{4h} crystal field energies. We also observed a strong temperature dependence in the spectra which we can attribute to the thermal population of low-lying excited states that are present due to the spin-orbit coupling in the Fe 3d. Using this Fe2+^{2+} impurity system as an example, we show that an accurate measurement of the orbital moment in Fe3_3O4_4 will provide a direct estimate for the effective local low-symmetry crystal fields on the Fe2+^{2+} sites, important for the theoretical modeling of the formation of orbital ordering

    Nonlinear optical probe of tunable surface electrons on a topological insulator

    Get PDF
    We use ultrafast laser pulses to experimentally demonstrate that the second-order optical response of bulk single crystals of the topological insulator Bi2_2Se3_3 is sensitive to its surface electrons. By performing surface doping dependence measurements as a function of photon polarization and sample orientation we show that second harmonic generation can simultaneously probe both the surface crystalline structure and the surface charge of Bi2_2Se3_3. Furthermore, we find that second harmonic generation using circularly polarized photons reveals the time-reversal symmetry properties of the system and is surprisingly robust against surface charging, which makes it a promising tool for spectroscopic studies of topological surfaces and buried interfaces
    • …
    corecore