219,749 research outputs found

    A VLSI architecture of JPEG2000 encoder

    Get PDF
    Copyright @ 2004 IEEEThis paper proposes a VLSI architecture of JPEG2000 encoder, which functionally consists of two parts: discrete wavelet transform (DWT) and embedded block coding with optimized truncation (EBCOT). For DWT, a spatial combinative lifting algorithm (SCLA)-based scheme with both 5/3 reversible and 9/7 irreversible filters is adopted to reduce 50% and 42% multiplication computations, respectively, compared with the conventional lifting-based implementation (LBI). For EBCOT, a dynamic memory control (DMC) strategy of Tier-1 encoding is adopted to reduce 60% scale of the on-chip wavelet coefficient storage and a subband parallel-processing method is employed to speed up the EBCOT context formation (CF) process; an architecture of Tier-2 encoding is presented to reduce the scale of on-chip bitstream buffering from full-tile size down to three-code-block size and considerably eliminate the iterations of the rate-distortion (RD) truncation.This work was supported in part by the China National High Technologies Research Program (863) under Grant 2002AA1Z142

    Undercover EUV Solar Jets Observed by the Interface Region Imaging Spectrograph

    Full text link
    It is well-known that extreme ultraviolet emission emitted at the solar surface is absorbed by overlying cool plasma. Especially in active regions dark lanes in EUV images suggest that much of the surface activity is obscured. Simultaneous observations from IRIS, consisting of UV spectra and slit-jaw images give vital information with sub-arcsecond spatial resolution on the dynamics of jets not seen in EUV images. We studied a series of small jets from recently formed bipole pairs beside the trailing spot of active region 11991, which occurred on 2014 March 5 from 15:02:21 UT to 17:04:07 UT. There were collimated outflows with bright roots in the SJI 1400 {\AA} (transition region) and 2796 {\AA} (upper chromosphere) that were mostly not seen in AIA 304 {\AA} (transition region) and AIA 171 \AA\ (lower corona) images. The Si IV spectra show strong blue-wing but no red-wing enhancements in the line profiles of the ejecta for all recurrent jets indicating outward flows without twists. We see two types of Mg II line profiles produced by the jets spires: reversed and non-reversed. Mg II lines remain optically thick but turn into optically thin in the highly Doppler shifted wings.The energy flux contained in each recurrent jet is estimated using a velocity differential emission measure technique which measures the emitting power of the plasma as a function of line-of-sight velocity. We found that all the recurrent jets release similar energy (108^8 erg cm−2^{-2} s−1^{-1} ) toward the corona and the downward component is less than 3\%.Comment: Accepted for publication in ApJ, 6 fiugre

    Singularities of the Magnon Boundstate S-Matrix

    Full text link
    We study the conjectured exact S-matrix for the scattering of BPS magnon boundstates in the spin-chain description of planar N=4 SUSY Yang-Mills. The conjectured S-matrix exhibits both simple and double poles at complex momenta. Some of these poles lie parametrically close to the real axis in momentum space on the branch where particle energies are positive. We show that all such poles are precisely accounted for by physical processes involving one or more on-shell intermediate particles belonging to the known BPS spectrum.Comment: 32 pages, 9 figure

    General Kerr-NUT-AdS Metrics in All Dimensions

    Full text link
    The Kerr-AdS metric in dimension D has cohomogeneity [D/2]; the metric components depend on the radial coordinate r and [D/2] latitude variables \mu_i that are subject to the constraint \sum_i \mu_i^2=1. We find a coordinate reparameterisation in which the \mu_i variables are replaced by [D/2]-1 unconstrained coordinates y_\alpha, and having the remarkable property that the Kerr-AdS metric becomes diagonal in the coordinate differentials dy_\alpha. The coordinates r and y_\alpha now appear in a very symmetrical way in the metric, leading to an immediate generalisation in which we can introduce [D/2]-1 NUT parameters. We find that (D-5)/2 are non-trivial in odd dimensions, whilst (D-2)/2 are non-trivial in even dimensions. This gives the most general Kerr-NUT-AdS metric in DD dimensions. We find that in all dimensions D\ge4 there exist discrete symmetries that involve inverting a rotation parameter through the AdS radius. These symmetries imply that Kerr-NUT-AdS metrics with over-rotating parameters are equivalent to under-rotating metrics. We also consider the BPS limit of the Kerr-NUT-AdS metrics, and thereby obtain, in odd dimensions and after Euclideanisation, new families of Einstein-Sasaki metrics.Comment: Latex, 24 pages, minor typos correcte

    A Killing tensor for higher dimensional Kerr-AdS black holes with NUT charge

    Full text link
    In this paper, we study the recently discovered family of higher dimensional Kerr-AdS black holes with an extra NUT-like parameter. We show that the inverse metric is additively separable after multiplication by a simple function. This allows us to separate the Hamilton-Jacobi equation, showing that geodesic motion is integrable on this background. The separation of the Hamilton-Jacobi equation is intimately linked to the existence of an irreducible Killing tensor, which provides an extra constant of motion. We also demonstrate that the Klein-Gordon equation for this background is separable.Comment: LaTeX, 14 pages. v2: Typo corrected and equation added. v3: Reference added, introduction expanded, published versio

    Structure of the hadron-quark mixed phase in protoneutron stars

    Full text link
    We study the hadron-quark phase transition in the interior of hot protoneutron stars, combining the Brueckner-Hartree-Fock approach for hadronic matter with the MIT bag model or the Dyson-Schwinger model for quark matter. We examine the structure of the mixed phase constructed according to different prescriptions for the phase transition, and the resulting consequences for stellar properties. We find important effects for the internal composition, but only very small influence on the global stellar properties.Comment: 6 pages, 4 figure

    Real-time standard scan plane detection and localisation in fetal ultrasound using fully convolutional neural networks

    Get PDF
    Fetal mid-pregnancy scans are typically carried out according to fixed protocols. Accurate detection of abnormalities and correct biometric measurements hinge on the correct acquisition of clearly defined standard scan planes. Locating these standard planes requires a high level of expertise. However, there is a worldwide shortage of expert sonographers. In this paper, we consider a fully automated system based on convolutional neural networks which can detect twelve standard scan planes as defined by the UK fetal abnormality screening programme. The network design allows real-time inference and can be naturally extended to provide an approximate localisation of the fetal anatomy in the image. Such a framework can be used to automate or assist with scan plane selection, or for the retrospective retrieval of scan planes from recorded videos. The method is evaluated on a large database of 1003 volunteer mid-pregnancy scans. We show that standard planes acquired in a clinical scenario are robustly detected with a precision and recall of 69 % and 80 %, which is superior to the current state-of-the-art. Furthermore, we show that it can retrospectively retrieve correct scan planes with an accuracy of 71 % for cardiac views and 81 % for non-cardiac views

    Reynolds stress models of homogeneous turbulence

    Get PDF
    Existing and new models for the rapid and the return terms in the Reynolds stress equations were tested in two ways. One, by direct comparison of the model with simulation data. The other, by simulating the flows using the models and comparing the predicted Reynolds stresses with the data. It was found that existing linear models can be improved and that nonlinear models are in better agreement with the simulation data for a wide variety of flows
    • 

    corecore