10,837 research outputs found

    Revisiting hadron production at SIS energies using new HADES data

    Get PDF

    Oscillators and relaxation phenomena in Pleistocene climate theory

    Get PDF
    Ice sheets appeared in the northern hemisphere around 3 million years ago and glacial-interglacial cycles have paced Earth's climate since then. Superimposed on these long glacial cycles comes an intricate pattern of millennial and sub-millennial variability, including Dansgaard-Oeschger and Heinrich events. There are numerous theories about theses oscillations. Here, we review a number of them in order to draw a parallel between climatic concepts and dynamical system concepts, including, in particular, the relaxation oscillator, excitability, slow-fast dynamics and homoclinic orbits. Namely, almost all theories of ice ages reviewed here feature a phenomenon of synchronisation between internal climate dynamics and the astronomical forcing. However, these theories differ in their bifurcation structure and this has an effect on the way the ice age phenomenon could grow 3 million years ago. All theories on rapid events reviewed here rely on the concept of a limit cycle in the ocean circulation, which may be excited by changes in the surface freshwater surface balance. The article also reviews basic effects of stochastic fluctuations on these models, including the phenomenon of phase dispersion, shortening of the limit cycle and stochastic resonance. It concludes with a more personal statement about the potential for inference with simple stochastic dynamical systems in palaeoclimate science. Keywords: palaeoclimates, dynamical systems, limit cycle, ice ages, Dansgaard-Oeschger eventsComment: Published in the Transactions of the Philosophical Transactions of the Royal Society (Series A, Physical Mathematical and Engineering Sciences), as a contribution to the Proceedings of the workshop on Stochastic Methods in Climate Modelling, Newton Institute (23-27 August). Philosophical Transactions of the Royal Society (Series A, Physical Mathematical and Engineering Sciences), vol. 370, pp. xx-xx (2012); Source codes available on request to author and on http://www.uclouvain.be/ito

    Nonequilibrium Generalised Langevin Equation for the calculation of heat transport properties in model 1D atomic chains coupled to two 3D thermal baths

    Get PDF
    We use a Generalised Langevin Equation (GLE) scheme to study the thermal transport of low dimensional systems. In this approach, the central classical region is connected to two realistic thermal baths kept at two different temperatures [H. Ness et al., Phys. Rev. B {\bf 93}, 174303 (2016)]. We consider model Al systems, i.e. one-dimensional atomic chains connected to three-dimensional baths. The thermal transport properties are studied as a function of the chain length NN and the temperature difference ΔT\Delta T between the baths. We calculate the transport properties both in the linear response regime and in the non-linear regime. Two different laws are obtained for the linear conductance versus the length of the chains. For large temperatures (T≳500T \gtrsim 500 K) and temperature differences (ΔT≳500\Delta T \gtrsim 500 K), the chains, with N>18N > 18 atoms, present a diffusive transport regime with the presence of a temperature gradient across the system. For lower temperatures(Tâ‰Č500T \lesssim 500 K) and temperature differences (ΔTâ‰Č400\Delta T \lesssim 400 K), a regime similar to the ballistic regime is observed. Such a ballistic-like regime is also obtained for shorter chains (N≀15N \le 15 ). Our detailed analysis suggests that the behaviour at higher temperatures and temperature differences is mainly due to anharmonic effects within the long chains.Comment: Accepted for publication in J. Chem. Phy

    Ricci Collineations of the Bianchi Type II, VIII, and IX Space-times

    Get PDF
    Ricci and contracted Ricci collineations of the Bianchi type II, VIII, and IX space-times, associated with the vector fields of the form (i) one component of Οa(xb)\xi^a(x^b) is different from zero and (ii) two components of Οa(xb)\xi^a(x^b) are different from zero, for a,b=1,2,3,4a,b=1,2,3,4, are presented. In subcase (i.b), which is Οa=(0,Ο2(xa),0,0)\xi^a= (0,\xi^2(x^a),0,0), some known solutions are found, and in subcase (i.d), which is Οa=(0,0,0,Ο4(xa))\xi^a =(0,0,0,\xi^4(x^a)), choosing S(t)=const.×R(t)S(t)=const.\times R(t), the Bianchi type II, VIII, and IX space-times is reduced to the Robertson-Walker metric.Comment: 12 Pages, LaTeX, 1 Table, no figure

    Development of aluminum alloy compounds for electroluminescent light sources

    Get PDF
    Aluminum alloy compounds as wide band gap semiconductors for electroluminescent light source

    A New Ultra-dense Group of Obscured Emission-Line Galaxies

    Get PDF
    We present the discovery of an isolated compact group of galaxies that is extremely dense (median projected galaxy separation: 6.9 kpc), has a very low velocity dispersion (σ2D\sigma_{\rm 2D} = 67 km s−1^{-1}), and where all observed members show emission lines and are morphologically disturbed. These properties, together with the lack of spirals and the presence of a prominent tidal tail make this group one of the most evolved compact groups.Comment: 15 pages,LaTeX, 2figures. A Postscript figure with spectra is available at ftp://astro.uibk.ac.at/pub/weinberger/ . Accepted for publication in ApJ Letter
    • 

    corecore