635 research outputs found

    Topological insulators in the quaternary chalcogenide compounds and ternary famatinite compounds

    Full text link
    We present first-principles calculations to predict several three dimensional (3D) topological insulators in quaternary chalcogenide compounds which are made of I2_2-II-IV-VI4_4 compositions and in ternary compositions of I3_3-V-VI4_4 famatinite compounds. Among the large members of these two families, we give examples of naturally occurring compounds which are mainly Cu-based chalcogenides. We show that these materials are candidates of 3D topological insulators or can be tuned to obtain topological phase transition by manipulating the atomic number of the other cation and anion elements. A band inversion can occur at a single point Γ\Gamma with considerably large inversion strength, in addition to the opening of a bulk band gap throughout the Brillouin zone. We also demonstrate that both of these families are related to each other by cross-substitutions of cations in the underlying tetragonal structure and that one can suitably tune their topological properties in a desired manner.Comment: 7 pages, 4 figure

    The effect of Coulomb interaction at ferromagnetic-paramagnetic metallic perovskite junctions

    Full text link
    We study the effect of Coulomb interactions in transition metal oxides junctions. In this paper we analyze charge transfer at the interface of a three layer ferromagnetic-paramagnetic-ferromagnetic metallic oxide system. We choose a charge model considering a few atomic planes within each layer and obtain results for the magnetic coupling between the ferromagnetic layers. For large number of planes in the paramagnetic spacer we find that the coupling oscillates with the same period as in RKKY but the amplitude is sensitive to the Coulomb energy. At small spacer thickness however, large differences may appear as function of : the number of electrons per atom in the ferromagnetics and paramagnetics materials, the dielectric constant at each component, and the charge defects at the interface plane emphasizing the effects of charge transfer.Comment: tex file and 7 figure

    Cancellation of probe effects in measurements of spin polarized momentum density by electron positron annihilation

    Full text link
    Measurements of the two dimensional angular correlation of the electron-positron annihilation radiation have been done in the past to detect the momentum spin density and the Fermi surface. We point out that the momentum spin density and the Fermi Surface of ferromagnetic metals can be revealed within great detail owing to the large cancellation of the electron-positron matrix elements which in paramagnetic multiatomic systems plague the interpretation of the experiments. We prove our conjecture by calculating the momentum spin density and the Fermi surface of the half metal CrO2, who has received large attention due to its possible applications as spintronics material

    Electronic structure of the ferromagnetic superconductor UCoGe from first principles

    Full text link
    The superconductor UCoGe is analyzed with electronic structure calculations using Linearized Augmented Plane Wave method based on Density Functional Theory. Ferromagnetic and antiferromagnetic calculations with and without correlations (via LDA+U) were done. In this compound the Fermi level is situated in a region where the main contribution to DOS comes from the U-5f orbital. The magnetic moment is mainly due to the Co-3d orbital with a small contribution from the U-5f orbital. The possibility of fully non-collinear magnetism in this compound seems to be ruled out. These results are compared with the isostructural compound URhGe, in this case the magnetism comes mostly from the U-5f orbital

    Substituting the main group element in cobalt - iron based Heusler alloys: Co2_2FeAl1x_{1-x}Six_x

    Full text link
    This work reports about electronic structure calculations for the Heusler compound Co2_2FeAl1x_{1-x}Six_x. Particular emphasis was put on the role of the main group element in this compound. The substitution of Al by Si leads to an increase of the number of valence electrons with increasing Si content and may be seen as electron-doping. Self-consistent electronic structure calculations were performed to investigate the consequences of the electron doping for the magnetic properties. The series Co2_2FeAl1x_{1-x}Six_x is found to exhibit half-metallic ferromagnetism and the magnetic moment follows the Slater-Pauling rule. It is shown that the electron-doping stabilises the gap in the minority states for x=0.5x=0.5.Comment: J. Phys. D (accepted

    Electronic structure, magnetism, and disorder in the Heusler compound Co2_2TiSn

    Full text link
    Polycrystalline samples of the half-metallic ferromagnet Heusler compound Co2_2TiSn have been prepared and studied using bulk techniques (X-ray diffraction and magnetization) as well as local probes (119^{119}Sn M\"ossbauer spectroscopy and 59^{59}Co nuclear magnetic resonance spectroscopy) in order to determine how disorder affects half-metallic behavior and also, to establish the joint use of M\"ossbauer and NMR spectroscopies as a quantitative probe of local ion ordering in these compounds. Additionally, density functional electronic structure calculations on ordered and partially disordered Co2_2TiSn compounds have been carried out at a number of different levels of theory in order to simultaneously understand how the particular choice of DFT scheme as well as disorder affect the computed magnetization. Our studies suggest that a sample which seems well-ordered by X-ray diffraction and magnetization measurements can possess up to 10% of antisite (Co/Ti) disordering. Computations similarly suggest that even 12.5% antisite Co/Ti disorder does not destroy the half-metallic character of this material. However, the use of an appropriate level of non-local DFT is crucial.Comment: 11 pages and 5 figure

    High energy, high resolution photoelectron spectroscopy of Co2Mn(1-x)Fe(x)Si

    Full text link
    This work reports on high resolution photoelectron spectroscopy for the valence band of Co2Mn(1-x)Fe(x)Si (x=0,0.5,1) excited by photons of about 8 keV energy. The measurements show a good agreement to calculations of the electronic structure using the LDA+U scheme. It is shown that the high energy spectra reveal the bulk electronic structure better compared to low energy XPS spectra. The high resolution measurements of the valence band close to the Fermi energy indicate the existence of the gap in the minority states for all three alloys.Comment: 14 pages, 5 figures, submitted to J. Phys. D: Appl. Phy

    Structure peculiarities of cementite and their influence on the magnetic characteristics

    Full text link
    The iron carbide Fe3CFe_3C is studied by the first-principle density functional theory. It is shown that the crystal structure with the carbon disposition in a prismatic environment has the lowest total energy and the highest energy of magnetic anisotropy as compared to the structure with carbon in an octahedron environment. This fact explains the behavior of the coercive force upon annealing of the plastically deformed samples. The appearance of carbon atoms in the octahedron environment can be revealed by Mossbauer experiment.Comment: 10 pages, 3 figures, 3 tables. submitted to Phys.Rev.

    Design of magnetic materials: Co2_2Cr1x_{1-x}Fex_{x}Al

    Full text link
    Doped Heusler compounds Co2_2Cr1x_{1-x}Fex_{x}Al with varying Cr to Fe ratio xx were investigated experimentally and theoretically. The electronic structure of the ordered, doped Heusler compound Co2_2Cr1x_{1-x}Fex_{x}Al (x=n/4,n=0,1,2,3,4)x=n/4, n=0,1,2,3,4) was calculated using different types of band structure calculations. The ordered compounds turned out to be ferromagnetic with small Al magnetic moment being aligned anti-parallel to the 3d transition metal moments. All compounds show a gap around the Fermi-energy in the minority bands. The pure compounds exhibit an indirect minority gap, whereas the ordered, doped compounds exhibit a direct gap. Magnetic circular dichroism (MCD) in X-ray absorption spectra was measured at the L2,3L_{2,3} edges of Co, Fe, and Cr of the pure compounds and the x=0.4x=0.4 alloy in order to determine element specific magnetic moments. Calculations and measurements show an increase of the magnetic moments with increasing iron content. The experimentally observed reduction of the magnetic moment of Cr can be explained by Co-Cr site-disorder. The presence of the gap in the minority bands of Co2_2CrAl can be attributed to the occurrence of pure Co2_2 and mixed CrAl (001)-planes in the L21L2_1 structure. It is retained in structures with different order of the CrAl planes but vanishes in the XX-structure with alternating CoCr and CoAl planes.Comment: corrected author lis

    Ferromagnetism in Fe-substituted spinel semiconductor ZnGa2_2O4_4

    Full text link
    Motivated by the recent experimental observation of long range ferromagnetic order at a relatively high temperature of 200K in the Fe-doped ZnGa2_2O4_4 semiconducting spinel, we propose a possible mechanism for the observed ferromagnetism in this system. We show, supported by band structure calculations, how a model similar to the double exchange model can be written down for this system and calculate the ground state phase diagram for the two cases where Fe is doped either at the tetrahedral position or at the octahedral position. We find that in both cases such a model can account for a stable ferromagnetic phase in a wide range of parameter space. We also argue that in the limit of high Fe2+^{2+} concentration at the tetrahedral positions a description in terms of a two band model is essential. The two ege_g orbitals and the hopping between them play a crucial role in stabilizing the ferromagnetic phase in this limit. The case when Fe is doped simultaneously at both the tetrahedral and the octahedral position is also discussed.Comment: 10 pages, 9 figures, added text, J. Phys. Cond. Mat. (to appear
    corecore