We present first-principles calculations to predict several three dimensional
(3D) topological insulators in quaternary chalcogenide compounds which are made
of I2-II-IV-VI4 compositions and in ternary compositions of
I3-V-VI4 famatinite compounds. Among the large members of these two
families, we give examples of naturally occurring compounds which are mainly
Cu-based chalcogenides. We show that these materials are candidates of 3D
topological insulators or can be tuned to obtain topological phase transition
by manipulating the atomic number of the other cation and anion elements. A
band inversion can occur at a single point Γ with considerably large
inversion strength, in addition to the opening of a bulk band gap throughout
the Brillouin zone. We also demonstrate that both of these families are related
to each other by cross-substitutions of cations in the underlying tetragonal
structure and that one can suitably tune their topological properties in a
desired manner.Comment: 7 pages, 4 figure