6,725 research outputs found

    Thermal analysis comparison between two random glass fibre reinforced thermoplastic matrix composites bonded by adhesives using microwaves: preliminary results

    Get PDF
    [Abstract]: This paper compares the thermal analysis of two types of random glass fibre reinforced thermoplastic matrix composites joined by adhesives using microwave energy. Fixed frequency, 2.45 GHz, microwave facility is used to join thirty three percent by weight random glass fibre reinforced polystyrene composite [PS/GF (33%)] and thirty three percent by weight random glass fibre reinforced low density polyethylene composite [LDPE/GF (33%)]. The facility used is shown in Figure 1. With a given power level, the composites were exposed to various exposure times to microwave irradiation. The primer or coupling agent used was 5-minute two-part adhesive. The heat distribution of the samples of the two types of composites was analysed and compared. The relationship between the heat distribution and the lap shear strength of the samples was also compared and discussed

    Superconducting Nanowires as Nonlinear Inductive Elements for Qubits

    Full text link
    We report microwave transmission measurements of superconducting Fabry-Perot resonators (SFPR), having a superconducting nanowire placed at a supercurrent antinode. As the plasma oscillation is excited, the supercurrent is forced to flow through the nanowire. The microwave transmission of the resonator-nanowire device shows a nonlinear resonance behavior, significantly dependent on the amplitude of the supercurrent oscillation. We show that such amplitude-dependent response is due to the nonlinearity of the current-phase relationship (CPR) of the nanowire. The results are explained within a nonlinear oscillator model of the Duffing oscillator, in which the nanowire acts as a purely inductive element, in the limit of low temperatures and low amplitudes. The low quality factor sample exhibits a "crater" at the resonance peak at higher driving power, which is due to dissipation. We observe a hysteretic bifurcation behavior of the transmission response to frequency sweep in a sample with a higher quality factor. The Duffing model is used to explain the Duffing bistability diagram. We also propose a concept of a nanowire-based qubit that relies on the current dependence of the kinetic inductance of a superconducting nanowire.Comment: 28 pages, 7 figure

    First-principles method of propagation of tightly bound excitons: exciton band structure of LiF and verification with inelastic x-ray scattering

    Get PDF
    We propose a simple first-principles method to describe propagation of tightly bound excitons. By viewing the exciton as a composite object (an effective Frenkel exciton in Wannier orbitals), we define an exciton kinetic kernel to encapsulate the exciton propagation and decay for all binding energy. Applied to prototypical LiF, our approach produces three exciton bands, which we verified quantitatively via inelastic x-ray scattering. The proposed real-space picture is computationally inexpensive and thus enables study of the full exciton dynamics, even in the presence of surfaces and impurity scattering. It also provides intuitive understanding to facilitate practical exciton engineering in semiconductors, strongly correlated oxides, and their nanostructures.Comment: 5 pages, 4 figures. Accepted by PR

    Evolution of Fermion Pairing from Three to Two Dimensions

    Full text link
    We follow the evolution of fermion pairing in the dimensional crossover from 3D to 2D as a strongly interacting Fermi gas of 6^6Li atoms becomes confined to a stack of two-dimensional layers formed by a one-dimensional optical lattice. Decreasing the dimensionality leads to the opening of a gap in radio-frequency spectra, even on the BCS-side of a Feshbach resonance. The measured binding energy of fermion pairs closely follows the theoretical two-body binding energy and, in the 2D limit, the zero-temperature mean-field BEC-BCS theory.Comment: 5 pages, 4 figure

    Coercive Field and Magnetization Deficit in Ga(1-x)Mn(x)As Epilayers

    Full text link
    We have studied the field dependence of the magnetization in epilayers of the diluted magnetic semiconductor Ga(1-x)Mn(x)As for 0.0135 < x < 0.083. Measurements of the low temperature magnetization in fields up to 3 T show a significant deficit in the total moment below that expected for full saturation of all the Mn spins. These results suggest that the spin state of the non-ferromagnetic Mn spins is energetically well separated from the ferromagnetism of the bulk of the spins. We have also studied the coercive field (Hc) as a function of temperature and Mn concentration, finding that Hc decreases with increasing Mn concentration as predicted theoretically.Comment: 15 total pages -- 5 text, 1 table, 4 figues. Accepted for publication in MMM 2002 conference proceedings (APL
    • …
    corecore