316,041 research outputs found
Interpolation function of the genocchi type polynomials
The main purpose of this paper is to construct not only generating functions
of the new approach Genocchi type numbers and polynomials but also
interpolation function of these numbers and polynomials which are related to a,
b, c arbitrary positive real parameters. We prove multiplication theorem of
these polynomials. Furthermore, we give some identities and applications
associated with these numbers, polynomials and their interpolation functions.Comment: 14 page
Current and vorticity auto correlation functions in open microwave billiards
Using the equivalence between the quantum-mechanical probability density in a
quantum billiard and the Poynting vector in the corresponding microwave system,
current distributions were studied in a quantum dot like cavity, as well as in
a Robnik billiard with lambda=0.4, and an introduced ferrite cylinder. Spatial
auto correlation functions for currents and vorticity were studied and compared
with predictions from the random-superposition-of-plane-waves hypothesis. In
addition different types of vortex neighbour spacing distributions were
determined and compared with theory.Comment: PTP-LaTeX, 10 pages with 6 figures submitted to Progress of
Theoretical Physics Supplemen
Research study on materials processing in space, experiment M512
Gallium arsenide, a commercially valuable semiconductor, has been prepared from the melt (M.P. 1237C), by vapor growth, and by growth from metallic solutions. It has been established that growth from metallic solution can produce material with high, and perhaps with the highest possible, chemical homogeneity and crystalline perfection. Growth of GaAs from metallic solution can be performed at relatively low temperatures (about 600C) and is relatively insensitive to temperature fluctuations. However, this type of crystal growth is subject to the decided disadvantage that density induced convection currents may produce variations in rates of growth at a growing surface. This problem would be minimized under reduced gravity conditions
Pertinent Dirac structure for QCD sum rules of meson-baryon coupling constants
Using general baryon interpolating fields for
without derivative, we study QCD sum rules for meson-baryon couplings and their
dependence on Dirac structures for the two-point correlation function with a
meson i\int d^4x e^{iqx} \bra 0|{\rm T}[J_B(x)\bar{J}_B(0)] |{\cal M}(p)\ket.
Three distinct Dirac structures are compared: ,
i\gamma_5\fslash{p}, and structures.
From the dependence of the OPE on general baryon interpolating fields, we
propose criteria for choosing an appropriate Dirac structure for the coupling
sum rules. The sum rules satisfy the
criteria while the sum rules beyond the chiral limit do not. For
the i\gamma_5\fslash{p} sum rules, the large continuum contributions prohibit
reliable prediction for the couplings. Thus, the structure seems pertinent for realistic predictions. In the SU(3) limit,
we identify the OPE terms responsible for the ratio. We then study the
dependence of the ratio on the baryon interpolating fields. We conclude the
ratio for appropriate choice of the interpolating fields.Comment: To be published in Phys.Rev.C ; 21 pages,8 figures, revtex ;
references are adde
- …
