2,030 research outputs found

    Qualitative analysis of solutions to mixed-order positive linear coupled systems with bounded or unbounded delays

    Full text link
    This paper addresses the qualitative theory of mixed-order positive linear coupled systems with bounded or unbounded delays. First, we introduce a general result on the existence and uniqueness of solutions to mixed-order linear coupled systems with time-varying delays. Next, we obtain the necessary and sufficient criteria which characterize the positivity of a mixed-order delay linear coupled system. Our main contribution is in Section 5. More precisely, by using a smoothness property of solutions to fractional differential equations and developing a new appropriated comparison principle for solutions to mixed-order delayed positive systems, we prove the attractivity of mixed-order non-homogeneous linear positive coupled systems with bounded or unbounded delays. We also establish a necessary and sufficient condition to characterize the stability of homogeneous systems. As a consequence of these results, we show the smallest asymptotic bound of solutions to mixed-order delay non-homogeneous linear positive coupled systems where disturbances are continuous and bounded. Finally, we provide numerical simulations to illustrate the proposed theoretical results

    Max-min Rate Optimization of Low-Complexity Hybrid Multi-User Beamforming Maintaining Rate-Fairness

    Full text link
    A wireless network serving multiple users in the millimeter-wave or the sub-terahertz band by a base station is considered. High-throughput multi-user hybrid-transmit beamforming is conceived by maximizing the minimum rate of the users. For the sake of energy-efficient signal transmission, the array-of-subarrays structure is used for analog beamforming relying on low-resolution phase shifters. We develop a convexsolver based algorithm, which iteratively invokes a convex problem of the same beamformer size for its solution. We then introduce the soft max-min rate objective function and develop a scalable algorithm for its optimization. Our simulation results demonstrate the striking fact that soft max-min rate optimization not only approaches the minimum user rate obtained by max-min rate optimization but it also achieves a sum rate similar to that of sum-rate maximization. Thus, the soft max-min rate optimization based beamforming design conceived offers a new technique of simultaneously achieving a high individual quality-of-service for all users and a high total network throughput

    The fluctuation energy balance in non-suspended fluid-mediated particle transport

    Full text link
    Here we compare two extreme regimes of non-suspended fluid-mediated particle transport, transport in light and heavy fluids ("saltation" and "bedload", respectively), regarding their particle fluctuation energy balance. From direct numerical simulations, we surprisingly find that the ratio between collisional and fluid drag dissipation of fluctuation energy is significantly larger in saltation than in bedload, even though the contribution of interparticle collisions to transport of momentum and energy is much smaller in saltation due to the low concentration of particles in the transport layer. We conclude that the much higher frequency of high-energy particle-bed impacts ("splash") in saltation is the cause for this counter-intuitive behavior. Moreover, from a comparison of these simulations to Particle Tracking Velocimetry measurements which we performed in a wind tunnel under steady transport of fine and coarse sand, we find that turbulent fluctuations of the flow produce particle fluctuation energy at an unexpectedly high rate in saltation even under conditions for which the effects of turbulence are usually believed to be small

    Flocculation of Reactive Blue 19 (RB19) using Alum and the Effects of Catalysts Addition

    Full text link
    There are a variety of primary coagulants which can be used in a water treatment plant. One of the earliest, and still the most extensively used, is aluminum sulfate, also known as alum. Aluminum Sulfate (Alum) is one of the most commonly used flocculent in waste water treatment processes. Effectiveness of Alum in flocculation process is determined by many factors such as the effluents pH, flocculent dose as well as the use of catalyst to improve efficiency rate of flocculation. Hence special attention to these factors especially the use of catalyst has been brought about by this study. Experiments were carried out using Reactive Blue 19 Dye as the contaminant of waste water and two catalysts namely Calcium Hydroxide (CaOH2) and Poly Aluminum Chloride (PACl) were evaluated. The results obtained proved that indeed after addition of catalysts, removal efficiency rates of Alum can be increased up to 25% using Calcium Hydroxide and up to 35% using Poly Aluminum Chloride compared to Alum alone. The optimum conditions for this study were at pH 5.5 ~7.5, 300 mg/L of Alum 30seconds of rapid mixing time with 300 rpm , 30rpm of mixing rate for 5 minutes and 30 minutes of settling time. Moreover, Alum showed the highest performance under these conditions and using 50 mg/L PACl as catalyst with 98.52% of COD reduction and 90.60% of color reduction. In conclusion, Alum with the support of PACl as catalyst is an effective coagulant, which can reduce the level of COD and Dye Color in Reactive Blue 19 contaminated wastewater

    Federated Deep Reinforcement Learning-based Bitrate Adaptation for Dynamic Adaptive Streaming over HTTP

    Full text link
    In video streaming over HTTP, the bitrate adaptation selects the quality of video chunks depending on the current network condition. Some previous works have applied deep reinforcement learning (DRL) algorithms to determine the chunk's bitrate from the observed states to maximize the quality-of-experience (QoE). However, to build an intelligent model that can predict in various environments, such as 3G, 4G, Wifi, \textit{etc.}, the states observed from these environments must be sent to a server for training centrally. In this work, we integrate federated learning (FL) to DRL-based rate adaptation to train a model appropriate for different environments. The clients in the proposed framework train their model locally and only update the weights to the server. The simulations show that our federated DRL-based rate adaptations, called FDRLABR with different DRL algorithms, such as deep Q-learning, advantage actor-critic, and proximal policy optimization, yield better performance than the traditional bitrate adaptation methods in various environments.Comment: 13 pages, 1 colum

    One-loop effective potential for SO(10) GUT theories in de Sitter space

    Full text link
    Zeta-function regularization is applied to evaluate the one-loop effective potential for SO(10) grand-unified theories in de Sitter cosmologies. When the Higgs scalar field belongs to the 210-dimensional irreducible representation of SO(10), attention is focused on the mass matrix relevant for the SU(3)xSU(2)xU(1) symmetry-breaking direction, to agree with low-energy phenomenology of the particle-physics standard model. The analysis is restricted to those values of the tree-level-potential parameters for which the absolute minima of the classical potential have been evaluated. As shown in the recent literature, such minima turn out to be SO(6)xSO(4)- or SU(3)xSU(2)xSU(2)xU(1)-invariant. Electroweak phenomenology is more naturally derived, however, from the former minima. Hence the values of the parameters leading to the alternative set of minima have been discarded. Within this framework, flat-space limit and general form of the one-loop effective potential are studied in detail by using analytic and numerical methods. It turns out that, as far as the absolute-minimum direction is concerned, the flat-space limit of the one-loop calculation about a de Sitter background does not change the results previously obtained in the literature, where the tree-level potential in flat space-time was studied. Moreover, when curvature effects are no longer negligible in the one-loop potential, it is found that the early universe remains bound to reach only the SO(6)xSO(4) absolute minimum.Comment: 25 pages, plain Tex, plus Latex file of the tables appended at the end. Published in Classical and Quantum Gravity, Vol. 11, pp. 2031-2044, August 199

    The impact of intraspecific competition on tree growth in planted Korean pine forest

    Get PDF
    The aim of this study was to explore the correlation of competition indices (CIs) on individual tree growth for Korean pine (Pinus koraiensis) plantation using partial correlation analysis and generalized linear models. The data were collected from 15 permanent plots in Mengjiagang forestry farm, Northeast China. The results showed that the distance dependent CIs have a higher predictive capacity for individual growth of pine trees. The control index of competitive trees number (CI1) combined with the selection fixed competitor trees (M2) was found to be the most well correlated competition measure with five - years diameter increment. Thus, the competition index (CI1- M2) was recommended for developing individual tree growth models. The subject tree diameter at breast height, crown width, height to crown base, tree volume and basal area all showed a significantly linear correlation with tree competition intensity (P 0,05). Diameter at breast height, crown width, tree volume and basal area all decreased with increasing competition intensity, whereas the height to crown base increased. There was no significant relationship between competition intensity and tree height (P 0,05). The optimal model of predicting individual growth with logarithm of diameter at breast height and CIs as the independent variables due to the best fitting performance. This results also showed considerable improvement in predicting individual tree periodic growth when including competition indices that the mean absolute error is reduced in the range of 22−25%.

    Preparation and Foliar Application of Oligochitosan - Nanosilica on the Enhancement of Soybean Seed Yield

    Full text link
    Oligochitosan with weight average molecu-lar weight (Mw) of 5000 g/mol was prepared by gamma Co-60 radiation degradation of 4% chitosan solution containing 0.5% H2O2 at 21 kGy. Nanosilica with size of 10 – 30 nm was synthesized by calcination of acid treated rice husk at 700o C for 2 h. The mixture of 2% oligo-chitosan-2% nanosilica was prepared by dispersion of nanosilica in oligochitosan solution. Oligochitosan, nanosilica and their mixture were characterized by gel permeation chromatography (GPC), transmission electr-on microscopy (TEM), X-ray diffraction (XRD), energy dispersive x-ray spectroscopy (EDX), Ultraviolet-visible spectroscopy (UV-Vis), and Furrier transform infrared spectroscopy (FT-IR). Effect of foliar application of oli-gochitosan and oligochitosan-nanosilica on soybean seed yield was conducted in experimental field. Results indi-cated that soybean seed yield increased 10.5 and 17.0% for oligochitosan and oligochitosan-nanosilica, respect-tively for the control. Radiation degraded oligo-chitosan and its mixture with nanosilica can be potentially used for cultivation of soybean with enhanced seed yield
    corecore