306 research outputs found

    More Evidence for a Distribution of Tunnel Splittings in Mn12_{12}-acetate

    Full text link
    In magnetic fields applied parallel to the anisotropy axis, the magnetization of Mn12_{12} has been measured in response to a field that is swept back and forth across the resonances corresponding to steps N=4,5,...9N=4,5,...9. The fraction of molecules remaining in the metastable well after each sweep through the resonance is inconsistent with expectations for an ensemble of identical molecules. The data are consistent instead with the presence of a broad distribution of tunnel splittings. A very good fit is obtained for a Gaussian distribution of the second-order anisotropy tunneling parameter XE=ln(E/2D)X_E=-\ln(\mid E\mid/2D). We show that dipolar shuffling is a negligible effect which cannot explain our data.Comment: minor corrections (PACS nos, signs in Fig. 2

    Experimental Upper Bound on Superradiance Emission from Mn12 Acetate

    Full text link
    We used a Josephson junction as a radiation detector to look for evidence of the emission of electromagnetic radiation during magnetization avalanches in a crystal assembly of Mn_12-Acetate. The crystal assembly exhibits avalanches at several magnetic fields in the temperature range from 1.8 to 2.6 K with durations of the order of 1 ms. Although a recent study shows evidence of electromagnetic radiation bursts during these avalanches [J. Tejada, et al., Appl. Phys. Lett. {\bf 84}, 2373 (2004)], we were unable to detect any significant radiation at well-defined frequencies. A control experiment with external radiation pulses allows us to determine that the energy released as radiation during an avalanche is less than 1 part in 10^4 of the total energy released. In addition, our avalanche data indicates that the magnetization reversal process does not occur uniformly throughout the sample.Comment: 4 RevTeX pages, 3 eps figure

    Parallel magnetic field induced giant magnetoresistance in low density {\it quasi}-two dimensional layers

    Full text link
    We provide a possible theoretical explanation for the recently observed giant positive magnetoresistance in high mobility low density {\it quasi}-two dimensional electron and hole systems. Our explanation is based on the strong coupling of the parallel field to the {\it orbital} motion arising from the {\it finite} layer thickness and the large Fermi wavelength of the {\it quasi}-two dimensional system at low carrier densities.Comment: 4 pages with 4 figures. Accepted for Publication in Physical Review Letter

    Hall Coefficient of a Dilute 2D Electron System in Parallel Magnetic Field

    Full text link
    Measurements in magnetic fields applied at a small angle with respect to the 2D plane of the electrons of a low-density silicon MOSFET indicate that the Hall coefficient is independent of parallel field from H=0 to H>HsatH>H_{sat}, the field above which the longitudinal resistance saturates and the electrons have reached full spin-polarization. This implies that the mobilities of the spin-up and spin-down electrons remain comparable at all magnetic fields, and suggests there is strong mixing of spin-up and spin-down electron states.Comment: 4 pages, 2 figure

    Abrupt Transition between Thermally-Activated Relaxation and Quantum Tunneling in a Molecular Magnet

    Full text link
    We report Hall sensor measurements of the magnetic relaxation of Mn12_{12} acetate as a function of magnetic field applied along the easy axis of magnetization. Data taken at a series of closely-spaced temperatures between 0.24 K and 1.4 K provide strong new evidence for an abrupt ``first-order'' transition between thermally-assisted relaxation and magnetic decay via quantum tunneling.Comment: 4 pages, including 7 figure

    Stimulating fertility awareness: the importance of getting the language right

    Get PDF
    While education about fertility is not intrinsically controversial, finding the right language to communicate the topic can be challenging, as there are several risks of unintended negative effects such as dissonance, anxiety, culpability, and stigma due to social norming. In this article, we share some of our learnings from promoting fertility awareness in the hope that they will inspire further debate and research on this topic. Starting from the ethical principles of respect for reproductive autonomy, avoiding harm (in terms of stigma or anxiety) and inclusivity, we have formulated five recommendations: (i) frame fertility awareness messages with (reproductive) autonomy in mind and aim to be inclusive of those who do not represent the traditional nuclear family; (ii) be empathetic and steer clear of blame; (iii) avoid scaremongering and offer a positive angle; (iv) give due consideration to both women and men in fertility health messaging; and (v) tailor the messages to particular contexts and audiences and develop resources in close collaboration with the target groups

    Quantum-classical transition of the escape rate of uniaxial antiferromagnetic particles in an arbitrarily directed field

    Get PDF
    Quantum-classical escape rate transition has been studied for uniaxial antiferromagnetic particles with an arbitrarily directed magnetic field. In the case that the transverse and longitudinal fileds coexist, we calculate the phase boundary line between first- and second-order transitions, from which phase diagrams can be obtained. It is shown that the effects of the applied longitudinal magnetic field on quantum-classical transition vary greatly for different relative magnitudes of the non-compensation.Comment: to be appeared in Phys. Rev.

    Photon-Induced Magnetization Reversal in Single-Molecule Magnets

    Full text link
    We use millimeter wave radiation to manipulate the populations of the energy levels of a single crystal molecular magnet Fe8. When a continuous wave radiation is in resonance with the transitions from the ground state to the first excited state, the equilibrium magnetization exhibits a dip. The position of this dip varies linearly with the radiation frequency. Our results provide a lower bound of 0.17 ns for transverse relaxation time and suggest the possibility that single-molecule magnets might be utilized for quantum computation.Comment: 16 pages, 3 figure
    corecore