24,240 research outputs found
Microdistribution of oxygen in silicon and its effects on electronic properties
The effects of interstitial oxygen on the electrical characteristics of Czochralski-grown silicon crystals were investigated for the first time on a microscale. It was found that the generation of thermal donors is not a direct function of the oxygen concentration. It was further found that the minority carrier life-time decreases with increasing oxygen concentration, on a microscale in as-grown crystals. It was thus shown, again for the first time, that oxygen in as grown crystals is not electronically inert as generally believed. Preannealing at 1200 C commonly employed in device fabrication, was found to suppress the donor generation at 450 C and to decrease the deep level concentrations
Recommended from our members
P2-type Na2/3Ni1/3Mn2/3O2 Cathode Material with Excellent Rate and Cycling Performance for Sodium-Ion Batteries
P2-type Na2/3Ni1/3Mn2/3O2 is an air-stable cathode material for sodium-ion batteries. However, it suffers irreversible P2-O2 phase transition in 4.2-V plateau and shows poor cycling stability and rate capability within this plateau. To evaluate the practicability of this material in 2.3–4.1 V voltage range, single-crystal micro-sized P2-type Na2/3Ni1/3Mn2/3O2 with high rate capability and cycling stability is synthesized via polyvinylpyrrolidone (PVP)-combustion method. The electrochemical performance is evaluated by galvanostatic charge-discharge tests. The kinetics of Na+ intercalation/deintercalation is studied detailly with potential intermittent titration technique (PITT), galvanostatic intermittent titration technique (GITT) and cyclic voltammetry (CV). The discharge capacity at 0.1 C in 2.3–4.1 V is 87.6 mAh g−1. It can deliver 91.5% capacity at 40 C rate and keep 89% after 650 cycles at 5C. The calculated theoretical energy density of full cell with hard carbon anode is 210 Wh kg−1. The moderate energy density associated with high power density and long cycle life is acceptable for load adjustment of new-energy power, showing the prospect of practical application
Discrete Razumikhin-type technique and stability of the Euler-Maruyama method to stochastic functional differential equations
A discrete stochastic Razumikhin-type theorem is established to investigate whether the Euler--Maruyama (EM) scheme can reproduce the moment exponential stability of exact solutions of stochastic functional differential equations (SFDEs). In addition, the Chebyshev inequality and the Borel-Cantelli lemma are applied to show the almost sure stability of the EM approximate solutions of SFDEs. To show our idea clearly, these results are used to discuss stability of numerical solutions of two classes of special SFDEs, including stochastic delay differential equations (SDDEs) with variable delay and stochastically perturbed equations
Gap Structure of the Spin-Triplet Superconductor Sr2RuO4 Determined from the Field-Orientation Dependence of Specific Heat
We report the field-orientation dependent specific heat of the spin-triplet
superconductor Sr2RuO4 under the magnetic field aligned parallel to the RuO2
planes with high accuracy. Below about 0.3 K, striking 4-fold oscillations of
the density of states reflecting the superconducting gap structure have been
resolved for the first time. We also obtained strong evidence of multi-band
superconductivity and concluded that the superconducting gap in the active
band, responsible for the superconducting instability, is modulated with a
minimum along the [100] direction.Comment: 4 pages, 4 figure
Liquid-like behavior of supercritical fluids
The high frequency dynamics of fluid oxygen have been investigated by
Inelastic X-ray Scattering. In spite of the markedly supercritical conditions
(, ), the sound velocity exceeds the hydrodynamic
value of about 20%, a feature which is the fingerprint of liquid-like dynamics.
The comparison of the present results with literature data obtained in several
fluids allow us to identify the extrapolation of the liquid vapor-coexistence
line in the (, ) plane as the relevant edge between liquid- and
gas-like dynamics. More interestingly, this extrapolation is very close to the
non metal-metal transition in hot dense fluids, at pressure and temperature
values as obtained by shock wave experiments. This result points to the
existence of a connection between structural modifications and transport
properties in dense fluids.Comment: 4 pages, 3 figures, accepted by Phys. Rev. Let
Fractal Characterizations of MAX Statistical Distribution in Genetic Association Studies
Two non-integer parameters are defined for MAX statistics, which are maxima
of simpler test statistics. The first parameter, , is the
fractional number of tests, representing the equivalent numbers of independent
tests in MAX. If the tests are dependent, . The second
parameter is the fractional degrees of freedom of the chi-square
distribution that fits the MAX null distribution. These two
parameters, and , can be independently defined, and can be
non-integer even if is an integer. We illustrate these two parameters
using the example of MAX2 and MAX3 statistics in genetic case-control studies.
We speculate that is related to the amount of ambiguity of the model
inferred by the test. In the case-control genetic association, tests with low
(e.g. ) are able to provide definitive information about the disease
model, as versus tests with high (e.g. ) that are completely uncertain
about the disease model. Similar to Heisenberg's uncertain principle, the
ability to infer disease model and the ability to detect significant
association may not be simultaneously optimized, and seems to measure the
level of their balance
- …