15,905 research outputs found
Identifying a core set of outcome domains to measure in clinical trials for shoulder disorders: a modified Delphi study.
OBJECTIVE: To achieve consensus on the most important outcome domains to measure across all clinical trials for shoulder disorders. METHODS: We performed an online modified Delphi study with an international, multidisciplinary and multistakeholder panel. A literature review and the OMERACT Filter 2.0 framework was used to generate a list of potential core domains, which were presented to patients, clinicians and researchers in two Delphi rounds. Participants were asked to judge the importance of each potential core domain and provide a rationale for their response. A core domain was defined a priori as a domain that at least 67% of participants considered core. RESULTS: In both rounds, 335 individuals were invited to participate (268 clinicians/researchers and 67 patients); response rates were 27% (n=91) and 29% (n=96), respectively. From a list of 41 potential core domains, four domains met our criteria for inclusion: 'pain', 'physical functioning', 'global assessment of treatment success' and 'health-related quality of life'. Two additional domains, 'sleep functioning' and 'psychological functioning', met the criteria for inclusion by some, but not all stakeholder groups. There was consensus that 'number of deaths' was not a core domain, but insufficient agreement on whether or not several other domains, including 'range of motion' and 'muscle strength', were core domains. CONCLUSIONS: Based on international consensus from patients, clinicians and researchers, 'pain', 'physical functioning', 'global assessment of treatment success' and 'health-related quality of life' were considered core outcome domains for shoulder disorder trials. The value of several other domains needs further consideration
A survey on health-promoting lifestyle among community-dwelling older people with hypertension in Macau
2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Studies on hemorrhagic pneumonia in Moschus sifanicus
A series of investigations were carried out including epidemiology, etiology and pathology on hemorrhagic pneumonia in Moschus sifanicus, which had prevailed in Xinglong Mountain National Nature Reserve District in Gansu province of China. The results indicated that the prevalence of thisdisease could be correlated with local humidity in Xinglong Mountain in Gansu province of China. The disease is caused by single infection of Pasteurella multocida or mix of P. multocida, Escherichia coli and Pseudomonas aeruginosa, and is a contagious disease. The pathological changes were mainly manifested in the vessel wall of bronchia and bronchiole appeared congested, bleeding, edemic with infiltration of inflammatory cells, mucosa of bronchiole degenerates, with the presence of necrosis and exfoliation, pulmonary alveolus generated suppuration, disaggregation and necrosis. It was concluded that the diseases are mainly caused by local bacteria and affected M. sifanicus finally die of hemorrhagic or purulent, necrotic pneumonia
Innovative denim fabric design by color coating using laser etching and hollowing technologies
Author name used in this publication: JIANG Shou-xiangRefereed conference paper2014-2015 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe
mTCTScan: a comprehensive platform for annotation and prioritization of mutations affecting drug sensitivity in cancers
Cancer therapies have experienced rapid progress in recent years, with a number of novel small-molecule kinase inhibitors and monoclonal antibodies now being widely used to treat various types of human cancers. During cancer treatments, mutations can have important effects on drug sensitivity. However, the relationship between tumor genomic profiles and the effectiveness of cancer drugs remains elusive. We introduce Mutation To Cancer Therapy Scan (mTCTScan) web server (http://jjwanglab.org/mTCTScan) that can systematically analyze mutations affecting cancer drug sensitivity based on individual genomic profiles. The platform was developed by leveraging the latest knowledge on mutation-cancer drug sensitivity associations and the results from large-scale chemical screening using human cancer cell lines. Using an evidence-based scoring scheme based on current integrative evidences, mTCTScan is able to prioritize mutations according to their associations with cancer drugs and preclinical compounds. It can also show related drugs/compounds with sensitivity classification by considering the context of the entire genomic profile. In addition, mTCTScan incorporates comprehensive filtering functions and cancer-related annotations to better interpret mutation effects and their association with cancer drugs. This platform will greatly benefit both researchers and clinicians for interrogating mechanisms of mutation-dependent drug response, which will have a significant impact on cancer precision medicine.published_or_final_versio
Multiple-length-scale elastic instability mimics parametric resonance of nonlinear oscillators
Spatially confined rigid membranes reorganize their morphology in response to
the imposed constraints. A crumpled elastic sheet presents a complex pattern of
random folds focusing the deformation energy while compressing a membrane
resting on a soft foundation creates a regular pattern of sinusoidal wrinkles
with a broad distribution of energy. Here, we study the energy distribution for
highly confined membranes and show the emergence of a new morphological
instability triggered by a period-doubling bifurcation. A periodic
self-organized focalization of the deformation energy is observed provided an
up-down symmetry breaking, induced by the intrinsic nonlinearity of the
elasticity equations, occurs. The physical model, exhibiting an analogy with
parametric resonance in nonlinear oscillator, is a new theoretical toolkit to
understand the morphology of various confined systems, such as coated materials
or living tissues, e.g., wrinkled skin, internal structure of lungs, internal
elastica of an artery, brain convolutions or formation of fingerprints.
Moreover, it opens the way to new kind of microfabrication design of
multiperiodic or chaotic (aperiodic) surface topography via self-organization.Comment: Submitted for publicatio
The role of mutation rate variation and genetic diversity in the architecture of human disease
Background
We have investigated the role that the mutation rate and the structure of genetic variation at a locus play in determining whether a gene is involved in disease. We predict that the mutation rate and its genetic diversity should be higher in genes associated with disease, unless all genes that could cause disease have already been identified.
Results
Consistent with our predictions we find that genes associated with Mendelian and complex disease are substantially longer than non-disease genes. However, we find that both Mendelian and complex disease genes are found in regions of the genome with relatively low mutation rates, as inferred from intron divergence between humans and chimpanzees, and they are predicted to have similar rates of non-synonymous mutation as other genes. Finally, we find that disease genes are in regions of significantly elevated genetic diversity, even when variation in the rate of mutation is controlled for. The effect is small nevertheless.
Conclusions
Our results suggest that gene length contributes to whether a gene is associated with disease. However, the mutation rate and the genetic architecture of the locus appear to play only a minor role in determining whether a gene is associated with disease
Anisotropic Impurity-States, Quasiparticle Scattering and Nematic Transport in Underdoped Ca(Fe1-xCox)2As2
Iron-based high temperature superconductivity develops when the `parent'
antiferromagnetic/orthorhombic phase is suppressed, typically by introduction
of dopant atoms. But their impact on atomic-scale electronic structure, while
in theory quite complex, is unknown experimentally. What is known is that a
strong transport anisotropy with its resistivity maximum along the crystal
b-axis, develops with increasing concentration of dopant atoms; this
`nematicity' vanishes when the `parent' phase disappears near the maximum
superconducting Tc. The interplay between the electronic structure surrounding
each dopant atom, quasiparticle scattering therefrom, and the transport
nematicity has therefore become a pivotal focus of research into these
materials. Here, by directly visualizing the atomic-scale electronic structure,
we show that substituting Co for Fe atoms in underdoped Ca(Fe1-xCox)2As2
generates a dense population of identical anisotropic impurity states. Each is
~8 Fe-Fe unit cells in length, and all are distributed randomly but aligned
with the antiferromagnetic a-axis. By imaging their surrounding interference
patterns, we further demonstrate that these impurity states scatter
quasiparticles in a highly anisotropic manner, with the maximum scattering rate
concentrated along the b-axis. These data provide direct support for the recent
proposals that it is primarily anisotropic scattering by dopant-induced
impurity states that generates the transport nematicity; they also yield simple
explanations for the enhancement of the nematicity proportional to the dopant
density and for the occurrence of the highest resistivity along the b-axis
Activation of Human Stearoyl-Coenzyme A Desaturase 1 Contributes to the Lipogenic Effect of PXR in HepG2 Cells
The pregnane X receptor (PXR) was previously known as a xenobiotic receptor. Several recent studies suggested that PXR also played an important role in lipid homeostasis but the underlying mechanism remains to be clearly defined. In this study, we found that rifampicin, an agonist of human PXR, induced lipid accumulation in HepG2 cells. Lipid analysis showed the total cholesterol level increased. However, the free cholesterol and triglyceride levels were not changed. Treatment of HepG2 cells with rifampicin induced the expression of the free fatty acid transporter CD36 and ABCG1, as well as several lipogenic enzymes, including stearoyl-CoA desaturase-1 (SCD1), long chain free fatty acid elongase (FAE), and lecithin-cholesterol acyltransferase (LCAT), while the expression of acyl:cholesterol acetyltransferase(ACAT1) was not affected. Moreover, in PXR over-expressing HepG2 cells (HepG2-PXR), the SCD1 expression was significantly higher than in HepG2-Vector cells, even in the absence of rifampicin. Down-regulation of PXR by shRNA abolished the rifampicin-induced SCD1 gene expression in HepG2 cells. Promoter analysis showed that the human SCD1 gene promoter is activated by PXR and a novel DR-7 type PXR response element (PXRE) response element was located at -338 bp of the SCD1 gene promoter. Taken together, these results indicated that PXR activation promoted lipid synthesis in HepG2 cells and SCD1 is a novel PXR target gene. © 2013 Zhang et al
- …