612 research outputs found

    Electron spin relaxation in paramagnetic Ga(Mn)As quantum wells

    Get PDF
    Electron spin relaxation in paramagnetic Ga(Mn)As quantum wells is studied via the fully microscopic kinetic spin Bloch equation approach where all the scatterings, such as the electron-impurity, electron-phonon, electron-electron Coulomb, electron-hole Coulomb, electron-hole exchange (the Bir-Aronov-Pikus mechanism) and the ss-dd exchange scatterings, are explicitly included. The Elliot-Yafet mechanism is also incorporated. From this approach, we study the spin relaxation in both nn-type and pp-type Ga(Mn)As quantum wells. For nn-type Ga(Mn)As quantum wells where most Mn ions take the interstitial positions, we find that the spin relaxation is always dominated by the DP mechanism in metallic region. Interestingly, the Mn concentration dependence of the spin relaxation time is nonmonotonic and exhibits a peak. This behavior is because that the momentum scattering and the inhomogeneous broadening have different density dependences in the non-degenerate and degenerate regimes. For pp-type Ga(Mn)As quantum wells, we find that Mn concentration dependence of the spin relaxation time is also nonmonotonic and shows a peak. Differently, this behavior is because that the ss-dd exchange scattering (or the Bir-Aronov-Pikus) mechanism dominates the spin relaxation in the high Mn concentration regime at low (or high) temperature, whereas the DP mechanism determines the spin relaxation in the low Mn concentration regime. The Elliot-Yafet mechanism also contributes the spin relaxation at intermediate temperature. The spin relaxation time due to the DP mechanism increases with Mn concentration due to motional narrowing, whereas those due to the spin-flip mechanisms decrease with Mn concentration, which thus leads to the formation of the peak.... (The remaining is omitted due to the space limit)Comment: 12 pages, 8 figures, Phys. Rev. B 79, 2009, in pres

    Statics and Dynamics of the Wormlike Bundle Model

    Get PDF
    Bundles of filamentous polymers are primary structural components of a broad range of cytoskeletal structures, and their mechanical properties play key roles in cellular functions ranging from locomotion to mechanotransduction and fertilization. We give a detailed derivation of a wormlike bundle model as a generic description for the statics and dynamics of polymer bundles consisting of semiflexible polymers interconnected by crosslinking agents. The elastic degrees of freedom include bending as well as twist deformations of the filaments and shear deformation of the crosslinks. We show that a competition between the elastic properties of the filaments and those of the crosslinks leads to renormalized effective bend and twist rigidities that become mode-number dependent. The strength and character of this dependence is found to vary with bundle architecture, such as the arrangement of filaments in the cross section and pretwist. We discuss two paradigmatic cases of bundle architecture, a uniform arrangement of filaments as found in F-actin bundles and a shell-like architecture as characteristic for microtubules. Each architecture is found to have its own universal ratio of maximal to minimal bending rigidity, independent of the specific type of crosslink induced filament coupling; our predictions are in reasonable agreement with available experimental data for microtubules. Moreover, we analyze the predictions of the wormlike bundle model for experimental observables such as the tangent-tangent correlation function and dynamic response and correlation functions. Finally, we analyze the effect of pretwist (helicity) on the mechanical properties of bundles. We predict that microtubules with different number of protofilaments should have distinct variations in their effective bending rigidity

    Resonant Raman scattering by collective modes of the one-dimensional electron gas

    Full text link
    We show that the low-energy peak in the polarized resonant Raman spectra of quantum wires, which is commonly associated with ``single particle excitations'', can be interpreted as signature of intra-band collective spin excitations. A broad maximum in the resonant depolarized spectra is predicted to exist above the frequency of the spin density excitation, due to simultaneous but independent propagation of spin- and charge-density modes.Comment: 4 pages, accepted for publication in Phys. Rev. Let

    Effects of tillage systems and mechanization on work time, fuel and energy consumption for cereal cropping in Austria

    Get PDF
    The machinery stock, fuel consumption and work time are crucial economic factors for the profit potential in the arable farming sector.  The influence of five soil tillage systems (two conventional tillage systems and three conservation tillage systems) and two tractor sizes (92 kW-tractor and 59 kW-tractor) on work time, fuel and energy consumption was measured in the semi-arid region in Austria.  The tractors were equipped with a high-performance flow meter and a radar sensor to measure the fuel consumption (L h-1) and working speed (km h-1).  The conventional tillage with mouldboard plough has the highest working time and fuel consumption rate.  The replacement of plough with a cultivator, reduces the work time and fuel consumption for soil tillage as well as the energy consumption per moved soil matter to more than 50% roughly.  The highest saving effects (more than 85%) were achieved with the direct drilling without soil tillage system.  A well loaded engine in a small tractor with small implements is more fuel efficient than a worse loaded engine in a “big tractor”.  An adjusted tractor-implement combination, which is well implemented in the 59-kW mechanization, decreases the fuel consumption to up to 30% and 46%.  Due to lower field capacity in the 59-kW mechanization, the work time is higher between 2.4% and 11.7%.   Keywords: fuel consumption, mechanization, tillage system, work tim

    Detection of large magneto-anisotropy of electron spin dephasing in a high-mobility two-dimensional electron system in a [001][001] GaAs/AlGaAs quantum well

    Get PDF
    In time-resolved Faraday rotation experiments we have detected an inplane anisotropy of the electron spin-dephasing time (SDT) in an nn--modulation-doped GaAs/Al0.3_{0.3}Ga0.7_{0.7}As single quantum well. The SDT was measured with magnetic fields of B1B\le 1 T, applied in the [110][110] and [11ˉ0][1\bar{1}0] inplane crystal directions of the GaAs quantum well. For fields along [11ˉ0][1\bar{1}0], we have found an up to a factor of about 2 larger SDT than in the perpendicular direction. Fully microscopic calculations, by numerically solving the kinetic spin Bloch equations considering the D'yakonov-Perel' and the Bir-Aronov-Pikus mechanisms, reproduce the experimental findings quantitatively. This quantitative analysis of the data allowed us to determine the relative strengths of Rashba and Dresselhaus terms in our sample. Moreover, we could estimate the SDT for spins aligned in the [110][110] {\em inplane} direction to be on the order of several nanoseconds, which is up to two orders of magnitude larger than that in the perpendicular {\em inplane} direction.Comment: 4 pages, 4 figures, to be published in PR

    Dependence of spin dephasing on initial spin polarization in a high-mobility two-dimensional electron system

    Get PDF
    We have studied the spin dynamics of a high-mobility two-dimensional electron system in a GaAs/Al_{0.3}Ga_{0.7}As single quantum well by time-resolved Faraday rotation and time-resolved Kerr rotation in dependence on the initial degree of spin polarization, P, of the electrons. By increasing the initial spin polarization from the low-P regime to a significant P of several percent, we find that the spin dephasing time, T2T_2^\ast, increases from about 20 ps to 200 ps; Moreover, T2T_2^\ast increases with temperature at small spin polarization but decreases with temperature at large spin polarization. All these features are in good agreement with theoretical predictions by Weng and Wu [Phys. Rev. B {\bf 68}, 075312 (2003)]. Measurements as a function of spin polarization at fixed electron density are performed to further confirm the theory. A fully microscopic calculation is performed by setting up and numerically solving the kinetic spin Bloch equations, including the D'yakonov-Perel' and the Bir-Aronov-Pikus mechanisms, with {\em all} the scattering explicitly included. We reproduce all principal features of the experiments, i.e., a dramatic decrease of spin dephasing with increasing PP and the temperature dependences at different spin polarizations.Comment: 8 pages, 8 figures, to be published in PR

    Magnetization of noncircular quantum dots

    Full text link
    We calculate the magnetization of quantum dots deviating from circular symmetry for noninteracting electrons or electrons interacting according to the Hartree approximation. For few electrons the magnetization is found to depend on their number, and the shape of the dot. The magnetization is an ideal probe into the many-electron state of a quantum dot.Comment: 11 RevTeX pages with 6 included Postscript figure

    AC-conductance of a quantum wire with electron-electron interaction

    Full text link
    The complex ac-response of a quasi-one dimensional electron system in the one-band approximation with an interaction potential of finite range is investigated. It is shown that linear response is exact for this model. The influence of the screening of the electric field is discussed. The complex absorptive conductance is analyzed in terms of resistive, capacitive and inductive behaviors.Comment: 13 pages, REVTeX, 7 eps figures, to appear in Phys. Rev.
    corecore