2,070 research outputs found

    Double-layer shocks in a magnetized quantum plasma

    Full text link
    The formation of small but finite amplitude electrostatic shocks in the propagation of quantum ion-acoustic waves (QIAWs) obliquely to an external magnetic field is reported in a quantum electron-positron-ion (e-p-i) plasma. Such shocks are seen to have double-layer (DL) structures composed of the compressive and accompanying rarefactive slow-wave fronts. Existence of such DL shocks depends critically on the quantum coupling parameter HH associated with the Bohm potential and the positron to electron density ratio δ\delta. The profiles may, however, steepen initially and reach a steady state with a number of solitary waves in front of the shocks. Such novel DL shocks could be a good candidate for particle acceleration in intense laser-solid density plasma interaction experiments as well as in compact astrophysical objects, e.g., magnetized white dwarfs.Comment: 4 pages, 1 figure (to appear in Physical Review E

    Quantum effects in linear and non-linear transport of T-shaped ballistic junction

    Full text link
    We report low-temperature transport measurements of three-terminal T-shaped device patterned from GaAs/AlGaAs heterostructure. We demonstrate the mode branching and bend resistance effects predicted by numerical modeling for linear conductance data. We show also that the backscattering at the junction area depends on the wave function parity. We find evidence that in a non-linear transport regime the voltage of floating electrode always increases as a function of push-pull polarization. Such anomalous effect occurs for the symmetric device, provided the applied voltage is less than the Fermi energy in equilibrium

    Exact solution of the Zeeman effect in single-electron systems

    Full text link
    Contrary to popular belief, the Zeeman effect can be treated exactly in single-electron systems, for arbitrary magnetic field strengths, as long as the term quadratic in the magnetic field can be ignored. These formulas were actually derived already around 1927 by Darwin, using the classical picture of angular momentum, and presented in their proper quantum-mechanical form in 1933 by Bethe, although without any proof. The expressions have since been more or less lost from the literature; instead, the conventional treatment nowadays is to present only the approximations for weak and strong fields, respectively. However, in fusion research and other plasma physics applications, the magnetic fields applied to control the shape and position of the plasma span the entire region from weak to strong fields, and there is a need for a unified treatment. In this paper we present the detailed quantum-mechanical derivation of the exact eigenenergies and eigenstates of hydrogen-like atoms and ions in a static magnetic field. Notably, these formulas are not much more complicated than the better-known approximations. Moreover, the derivation allows the value of the electron spin gyromagnetic ratio gsg_s to be different from 2. For completeness, we then review the details of dipole transitions between two hydrogenic levels, and calculate the corresponding Zeeman spectrum. The various approximations made in the derivation are also discussed in details.Comment: 18 pages, 4 figures. Submitted to Physica Script

    Quantum Degenerate Exciton-Polaritons in Thermal Equilibrium

    Full text link
    We study the momentum distribution and relaxation dynamics of semiconductor microcavity polaritons by angle-resolved and time-resolved spectroscopy. Above a critical pump level, the thermalization time of polaritons at positive detunings becomes shorter than their lifetime, and the polaritons form a quantum degenerate Bose-Einstein distribution in thermal equilibrium with the lattice.Comment: Updated with the published versio

    Influence of the single-particle Zeeman energy on the quantum Hall ferromagnet at high filling factors

    Full text link
    In a recent paper [B. A. Piot et al., Phys. Rev. B 72, 245325 (2005)], we have shown that the lifting of the electron spin degeneracy in the integer quantum Hall effect at high filling factors should be interpreted as a magnetic-field-induced Stoner transition. In this work, we extend the analysis to investigate the influence of the single-particle Zeeman energy on the quantum Hall ferromagnet at high filling factors. The single-particle Zeeman energy is tuned through the application of an additional in-plane magnetic field. Both the evolution of the spin polarization of the system and the critical magnetic field for spin splitting are well described as a function of the tilt angle of the sample in the magnetic field.Comment: Published in Phys. Rev.

    Finding binaries from phase modulation of pulsating stars with \textit{Kepler}: VI. Orbits for 10 new binaries with mischaracterised primaries

    Get PDF
    Measuring phase modulation in pulsating stars has proved to be a highly successful way of finding binary systems. The class of pulsating main-sequence A and F variables known as delta Scuti stars are particularly good targets for this, and the \textit{Kepler} sample of these has been almost fully exploited. However, some \textit{Kepler} δ\delta Scuti stars have incorrect temperatures in stellar properties catalogues, and were missed in previous analyses. We used an automated pulsation classification algorithm to find 93 new δ\delta Scuti pulsators among tens of thousands of F-type stars, which we then searched for phase modulation attributable to binarity. We discovered 10 new binary systems and calculated their orbital parameters, which we compared with those of binaries previously discovered in the same way. The results suggest that some of the new companions may be white dwarfs.Comment: 8 pages, 6 figures that make liberal use of colou

    Acetate Acetylacetonate Ampy Ruthenium(II) Complexes as Efficient Catalysts for Ketone Transfer Hydrogenation

    Get PDF
    The mixed acetate acetylacetonate (acac) ruthenium(II) phosphine complexes Ru(OAc)(acac)P2 [P2=(PPh3)2, Ph2P(CH2)4PPh2 (dppb)] were prepared by protonation of Ru(OAc)2(PPh3)2 with acetylacetone in dichloromethane. Reaction of the dppb derivative with 2-(aminomethyl)pyridine (ampy) affords the complex Ru(OAc)(acac)(ampy)(dppb), which converts to [Ru(acac)(ampy)(dppb)](OAc) in toluene at 90 \ub0C. In the former derivative the ampy ligand is monodentate and coordinates through the NH2-moiety. The isolated acac complexes are active catalysts for the transfer hydrogenation of ketones with loadings as low as 0.01 mol%, the ampy having a strong accelerating effect. Several aromatic and aliphatic ketone substrates are converted to their corresponding alcohols, and different electronic influences through substituents on acetophenone are tolerated

    Electrically tunable GHz oscillations in doped GaAs-AlAs superlattices

    Full text link
    Tunable oscillatory modes of electric-field domains in doped semiconductor superlattices are reported. The experimental investigations demonstrate the realization of tunable, GHz frequencies in GaAs-AlAs superlattices covering the temperature region from 5 to 300 K. The orgin of the tunable oscillatory modes is determined using an analytical and a numerical modeling of the dynamics of domain formation. Three different oscillatory modes are found. Their presence depends on the actual shape of the drift velocity curve, the doping density, the boundary condition, and the length of the superlattice. For most bias regions, the self-sustained oscillations are due to the formation, motion, and recycling of the domain boundary inside the superlattice. For some biases, the strengths of the low and high field domain change periodically in time with the domain boundary being pinned within a few quantum wells. The dependency of the frequency on the coupling leads to the prediction of a new type of tunable GHz oscillator based on semiconductor superlattices.Comment: Tex file (20 pages) and 16 postscript figure
    • …
    corecore