929 research outputs found

    Power systems research at MSFC

    Get PDF
    Power systems research reviews at Marshall Space Flight Cente

    Spin relaxation dynamics of radical-pair processes at low magnetic fields

    Full text link
    We report measurements of room-temperature spin-relaxation times T1T_1 and T2T_2 of charge-carrier spins in a π\pi-conjugated polymer thin film under bipolar injection and low (1\mbox{ mT}\lesssim B_0\lesssim 10\mbox{ mT}) static magnetic fields, using electrically detected magnetic resonant Hahn-echo and inversion-recovery pulse sequences. The experiments confirm the correlation between the magnetic-field sensitive observables of radical-pair processes, which include both the spin-dependent recombination currents in organic semiconductors and the associated spin-relaxation times when random local hyperfine fields and external magnetic fields compete in magnitude. Whereas a striking field dependence of spin-lattice relaxation exists in the low-field regime, the apparent spin decoherence time remains field independent as the distinction between the two is lifted at low fields.Comment: Manuscript: 14 pages, 4 figures; Supplemental Material: 13 pages, 7 figure

    Morphology effects on spin-dependent transport and recombination in polyfluorene thin films

    Full text link
    We have studied the role of spin-dependent processes on conductivity in polyfluorene (PFO) thin films by conducting continuous wave (c.w.) electrically detected magnetic resonance (EDMR) spectroscopy at temperatures between 10 K and 293 K using microwave frequencies between about 100 MHz and 20 GHz as well as pulsed EDMR at X-band. Variable frequency EDMR allows us to establish the role of spin-orbit coupling in spin-dependent processes, pulsed EDMR probes coherent spin motion effects. We used PFO for this study in order to allow for the investigation of the effects of microscopic morphological ordering since this material can adopt two distinct intrachain morphologies: an amorphous (glassy) phase, and an ordered (beta) phase. In thin films of organic light-emitting diodes (OLEDs) the appearance of a particular phase can be controlled by deposition parameters, and is verified by electroluminescence spectroscopy. We conducted multi-frequency c.w. EDMR, electrically detected Rabi spinbeat experiments, Hahn-echo and inversion-recovery measurements. Coherent echo spectroscopy reveals electrically detected electron spin-echo envelope modulation (ESEEM) due to the precession of the carrier spins around the protons. Our results demonstrate that while conformational disorder can influence the observed EDMR signals, including the sign of the current changes on resonance as well as the magnitudes of local hyperfine fields and charge carrier spin-orbit interactions, it does not qualitatively affect the nature of spin-dependent transitions in this material. At 293 K and 10 K, polaron-pair recombination through weakly spin-spin coupled intermediate charge carrier pair states is dominant, while at low temperatures, additional signatures of spin-dependent charge transport through the interaction of polarons with triplet excitons are seen in the half-field resonance of a triplet spin-1 species.Comment: 27 pages, 2 tables, 11 figures, full abstract in articl

    Non-Bloch-Siegert-type power-induced shift of two-photon electron paramagnetic resonances of charge-carrier spin states in an OLED

    Full text link
    We present Floquet theory-based predictions and electrically detected magnetic resonance (EDMR) experiments scrutinizing the nature of two-photon magnetic resonance shifts of charge-carrier spin states in the perdeuterated π\pi-conjugated polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene] (d-MEH-PPV) under strong magnetic resonant drive conditions (radiation amplitude B1B_1 ~ Zeeman field B0B_0). Numerical calculations show that the two-photon resonance shift with power is nearly drive-helicity independent. This is in contrast to the one-photon Bloch-Siegert shift that only occurs under non-circularly polarized strong drive conditions. We therefore treated the Floquet Hamiltonian analytically under arbitrary amplitudes of the co- and counter-rotating components of the radiation field to gain insight into the nature of the helicity dependence of multi-photon resonance shifts. In addition, we tested Floquet-theory predictions experimentally by comparing one-photon and two-photon charge-carrier spin resonance shifts observed through room-temperature EDMR experiments on d-MEH-PPV-based bipolar injection devices [i.e., organic light emitting diode structures (OLEDs)]. We found that under the experimental conditions of strong, linearly polarized drive, our observations consistently agree with theory, irrespective of the magnitude of B1B_1, and therefore underscore the robustness of Floquet theory in predicting nonlinear magnetic resonance behaviors.Comment: 22 pages, 5 figure

    An integrated approach to coastal and biological observations

    Get PDF
    Maritime economy, ecosystem-based management and climate change adaptation and mitigation raise emerging needs on coastal ocean and biological observations. Integrated ocean observing aims at optimizing sampling strategies and cost-efficiency, sharing data and best practices, and maximizing the value of the observations for multiple purposes. Recently developed cost-effective, near real time technology such as gliders, radars, ferrybox, and shallow water Argo floats, should be used operationally to generate operational coastal sea observations and analysis. Furthermore, value of disparate coastal ocean observations can be unlocked with multi-dimensional integration on fitness-for-the-purpose, parameter and instrumental. Integration of operational monitoring with offline monitoring programs, such as those for research, ecosystem-based management and commercial purposes, is necessary to fill the gaps. Such integration should lead to a system of networks which can deliver data for all kinds of purposes. Detailed integration activities are identified which should enhance the coastal ocean and biological observing capacity. Ultimately a program is required which integrates physical, biogeochemical and biological observation of the ocean, from coastal to deep-sea environments, bringing together global, regional, and local observation efforts
    • …
    corecore