8,809 research outputs found
An Experimental Investigation of Fluid Flow and Heating in Various Resonance Tube Modes
Experiments have been performed to study resonance phenomena in tubes excited by underexpanded jet flows. This investigation comprised the following: Study of the various resonance tube modes under a wide range of nozzle pressure, spacing between nozzle and tube mouth, and different tube length; the effects of these modes on the endwall pressure and gas temperature; flow visualization of both jet and tube flows by spark shadowgraph technique; and measurement of wave speed inside the tube by the laser-schlieren techniques. An extensive study of the free-jet flow was undertaken to explain important aspects of various modes of operation of resonance tube flows
Investigation of spray dispersion and particulate formation in diesel fuel flames
An experimental study of electrostatical atomized and dispersed diesel fuel jets was conducted at various back pressures to 40 atm. A new electrostatic injection technique was utilized to generate continuous, stable fuel sprays at charge densities of 1.5 to 2.0 C/m3 of fluid at one atm, and about 1.0 C/m3 at 40 atm. Flowrates were varied from 0.5 to 2.5 ml/s and electric potentials to -18 kV. Visual observations showed that significant enhanced dispersion of charged fuel jets occurred at high back pressures compared to aerodynamic breakup and dispersion. The average drop size was about the same as the spray triode orifice diameter, and was between the Kelly theory and the Rayleigh limit. The ignition tests, done only at one atm, indicated stable combustion of the electrostatically dispersed fuel jets
Fission Hindrance in hot 216Th: Evaporation Residue Measurements
The fusion evaporation-residue cross section for 32S+184W has been measured
at beam energies of E_beam = 165, 174, 185, 196, 205, 215, 225, 236, 246,and
257 MeV using the ATLAS Fragment Mass Analyzer. The data are compared with
Statistical Model calculations and it is found that a nuclear dissipation
strength, which increases with excitation energy, is required to reproduce the
excitation function. A comparison with previously published data show that the
dissipation strength depends strongly on the shell structure of the nuclear
system.Comment: 15 pages 9 figure
Damping by slow relaxing rare earth impurities in Ni80Fe20
Doping NiFe by heavy rare earth atoms alters the magnetic relaxation
properties of this material drastically. We show that this effect can be well
explained by the slow relaxing impurity mechanism. This process is a
consequence of the anisotropy of the on site exchange interaction between the
4f magnetic moments and the conduction band. As expected from this model the
magnitude of the damping effect scales with the anisotropy of the exchange
interaction and increases by an order of magnitude at low temperatures. In
addition our measurements allow us to determine the relaxation time of the 4f
electrons as a function of temperature
Caudal cervical vertebral morphological variation is not associated with clinical signs in Warmblood horses
Background Variation in equine caudal cervical spine morphology at C6 and C7 has high prevalence in Warmblood horses and is suspected to be associated with pain in a large mixed-breed group of horses. At present no data exist on the relationship between radiographic phenotype and clinical presentation in Warmblood horses in a case-control study. Objectives To establish the frequency of radiographically visible morphologic variation in a large group of Warmblood horses with clinical signs and compare this with a group without clinical signs. We hypothesised that occurrence of morphologic variation in the case group would not differ from the control group, indicating there is no association between clinical signs and morphologic variation. Study design Retrospective case-control. Methods Radiographic presence or absence of morphologic variation of cervical vertebrae C6 and C7 was recorded in case (n = 245) and control horses (n = 132). Case and control groups were compared by univariable Pearson's Chi-square and multivariable logistic regression for measurement variables age, sex, breed, degenerative joint disease and morphologic variation at C6 and C7. Odds ratio and confidence intervals were obtained. A P <= 0.05 was considered statistically significant. Results Morphologic variation at C6 and C7 (n = 108/377 = 28.6%; Cases 58/245 = 23.7%; Control 50/132 = 38%) was less frequent in horses with clinical signs in univariable testing (OR 0.48, 95% CI 0.3-0.8, P = 0.001). Age, sex, breed and degenerative joint disease were not retained in the final multivariable logistic regression step whereas morphologic variation remained significantly less present in horses with clinical signs. Main limitations Possible demographic differences between equine clinics. Conclusions Morphologic variation in the caudal cervical spine was detected more frequently in horses without clinical signs. Therefore, radiographic presence of such variation does not necessarily implicate the presence of clinical signs
The Effects of Dissolved Methane upon Liquid Argon Scintillation Light
In this paper we report on measurements of the effects of dissolved methane
upon argon scintillation light. We monitor the light yield from an alpha source
held 20 cm from a cryogenic photomultiplier tube (PMT) assembly as methane is
injected into a high-purity liquid argon volume. We observe significant
suppression of the scintillation light yield by dissolved methane at the 10
part per billion (ppb) level. By examining the late scintillation light time
constant, we determine that this loss is caused by an absorption process and
also see some evidence of methane-induced scintillation quenching at higher
concentrations (50-100 ppb). Using a second PMT assembly we look for visible
re-emission features from the dissolved methane which have been reported in
gas-phase argon methane mixtures, and we find no evidence of visible
re-emission from liquid-phase argon methane mixtures at concentrations between
10 ppb and 0.1%.Comment: 18 pages, 11 figures Updated to match published versio
Disturbance Observer
Disturbance observer is an inner-loop output-feedback controller whose role
is to reject external disturbances and to make the outer-loop baseline
controller robust against plant's uncertainties. Therefore, the closed-loop
system with the DOB approximates the nominal closed-loop by the baseline
controller and the nominal plant model with no disturbances. This article
presents how the disturbance observer works under what conditions, and how one
can design a disturbance observer to guarantee robust stability and to recover
the nominal performance not only in the steady-state but also for the transient
response under large uncertainty and disturbance
The unfolded protein response is required to maintain the integrity of the endoplasmic reticulum, prevent oxidative stress and preserve differentiation in β -cells
Diabetes is an epidemic of worldwide proportions caused by β -cell failure. Nutrient fluctuations and insulin resistance drive β -cells to synthesize insulin beyond their capacity for protein folding and secretion and thereby activate the unfolded protein response (UPR), an adaptive signalling pathway to promote cell survival upon accumulation of unfolded protein in the endoplasmic reticulum (ER). Protein kinase-like endoplasmic reticulum kinase (PERK) signals one component of the UPR through phosphorylation of eukaryotic initiation factor 2 on the α -subunit (eIF2 α ) to attenuate protein synthesis, thereby reducing the biosynthetic burden. β -Cells uniquely require PERK-mediated phosphorylation of eIF2 α to preserve cell function. Unabated protein synthesis in β -cells is sufficient to initiate a cascade of events, including oxidative stress, that are characteristic of β -cell failure observed in type 2 diabetes. In contrast to acute adaptive UPR activation, chronic activation increases expression of the proapoptotic transcription factor CAAT/enhancer-binding protein homologous protein (CHOP). Chop deletion in insulin-resistant mice profoundly increases β -cell mass and prevents β -cell failure to forestall the progression of diabetes. The findings suggest an unprecedented link by which protein synthesis and/or misfolding in the ER causes oxidative stress and should encourage the development of novel strategies to treat diabetes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79390/1/j.1463-1326.2010.01281.x.pd
Global polarization of QGP in non-central heavy ion collisions at high energies
Due to the presence of a large orbital angular momentum of the parton system
produced at the early stage of non-central heavy-ion collisions, quarks and
anti-quarks are shown to be polarized in the direction opposite to the reaction
plane which is determined by the impact-parameter and the beam momentum. The
global quark polarization via elastic scattering was first calculated in an
effective static potential model, then using QCD at finite temperature with the
hard-thermal-loop re-summed gluon propagator. The measurable consequences are
discussed. Global hyperon polarization from the hadronization of polarized
quarks are predicted independent of the hadronization scenarios. It has also
been shown that the global polarization of quarks and anti-quarks leads also to
spin alignment of vector mesons. Dedicated measurements at RHIC are underway
and some of the preliminary results are obtained. In this presentation, the
basic idea and main results of global quark polarization are presented. The
direct consequences such as global hyperon polarization and spin alignment are
summarized.Comment: plenary talk at the 19th International Conference on
Ultra-Relativistic Nucleus-Nucleus Collisions (QM2006), Shanghai, China,
November 14-20, 200
- …