17,695 research outputs found
Self-Tuning Adaptive-Controller Using Online Frequency Identification
A real time adaptive controller was designed and tested successfully on a fourth order laboratory dynamic system which features very low structural damping and a noncolocated actuator sensor pair. The controller, implemented in a digital minicomputer, consists of a state estimator, a set of state feedback gains, and a frequency locked loop (FLL) for real time parameter identification. The FLL can detect the closed loop natural frequency of the system being controlled, calculate the mismatch between a plant parameter and its counterpart in the state estimator, and correct the estimator parameter in real time. The adaptation algorithm can correct the controller error and stabilize the system for more than 50% variation in the plant natural frequency, compared with a 10% stability margin in frequency variation for a fixed gain controller having the same performance at the nominal plant condition. After it has locked to the correct plant frequency, the adaptive controller works as well as the fixed gain controller does when there is no parameter mismatch. The very rapid convergence of this adaptive system is demonstrated experimentally, and can also be proven with simple root locus methods
Correlated Spectral and Temporal Variability in the High-Energy Emission from Blazars
Blazar flare data show energy-dependent lags and correlated variability
between optical/X-ray and GeV-TeV energies, and follow characteristic
trajectories when plotted in the spectral-index/flux plane. This behavior is
qualitatively explained if nonthermal electrons are injected over a finite time
interval in the comoving plasma frame and cool by radiative processes.
Numerical results are presented which show the importance of the effects of
synchrotron self-Compton cooling and plasmoid deceleration. The use of INTEGRAL
to advance our understanding of these systems is discussed.Comment: 8 pages, 5 figures, uses epsf.sty, rotate.sty Invited paper in "The
Extreme Universe," 3rd INTEGRAL Workshop, 14-18 September 1998, Taorimina,
Ital
On Error Torques of Squeeze-film Cylindrical Journal Bearings
Error torques of squeeze film cylindrical journal bearing
On the slowly time dependent problem of squeeze film bearings
Time dependency of spherical squeeze-film bearing for use in suspension of precision gyroscope outpu
Dynamic response of a double squeeze-film thrust plate
Dynamic response of gaseous double squeeze film thrust plate for bearing
Populations of European corn borer, Ostrinia nubilalis (Hbn.) in field corn, Zea mays (L.)
Agricultural Experiment Stations of Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, North Dakota, South Dakota, Nebraska, Wisconsin, Ohio, and KansasDigitized 2007 AES.Includes bibliographical references (page 60)
Network equilibrium of heterogeneous congestion control protocols
When heterogeneous congestion control protocols that react to different pricing signals share the same network, the resulting equilibrium may no longer be interpreted as a solution to the standard utility maximization problem. We prove the existence of equilibrium under mild assumptions. Then we show that multi-protocol networks whose equilibria are locally non-unique or infinite in number can only form a set of measure zero. Multiple locally unique equilibria can arise in two ways. First, unlike in the single-protocol case, the set of bottleneck links can be non-unique with heterogeneous protocols even when the routing matrix has full row rank. The equilibria associated with different sets of bottleneck links are necessarily distinct. Second, even when there is a unique set of bottleneck links, network equilibrium can still be non-unique, but is always finite and odd in number. They cannot all be locally stable unless it is globally unique. Finally, we provide various sufficient conditions for global uniqueness. Numerical examples are used throughout the paper to illustrate these results
A Genetic Algorithm Based Finger Selection Scheme for UWB MMSE Rake Receivers
Due to a large number of multipath components in a typical ultra wideband
(UWB) system, selective Rake (SRake) receivers, which combine energy from a
subset of multipath components, are commonly employed. In order to optimize
system performance, an optimal selection of multipath components to be employed
at fingers of an SRake receiver needs to be considered. In this paper, this
finger selection problem is investigated for a minimum mean square error (MMSE)
UWB SRake receiver. Since the optimal solution is NP hard, a genetic algorithm
(GA) based iterative scheme is proposed, which can achieve near-optimal
performance after a reasonable number of iterations. Simulation results are
presented to compare the performance of the proposed finger selection algorithm
with those of the conventional and optimal schemes.Comment: To appear in the Proc. IEEE International Conference on Ultrawideband
(ICU-2005
- …